Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Euro Surveill ; 29(7)2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38362626

RESUMEN

BackgroundAntimicrobial resistance (AMR) of Mycoplasma genitalium (MG) is a growing concern worldwide and surveillance is needed. In Belgium, samples are sent to the National Reference Centre of Sexually Transmitted Infections (NRC-STI) on a voluntary basis and representative or robust national AMR data are lacking.AimWe aimed to estimate the occurrence of resistant MG in Belgium.MethodsBetween July and November 2022, frozen remnants of MG-positive samples from 21 Belgian laboratories were analysed at the NRC-STI. Macrolide and fluoroquinolone resistance-associated mutations (RAMs) were assessed using Sanger sequencing of the 23SrRNA and parC gene. Differences in resistance patterns were correlated with surveillance methodology, socio-demographic and behavioural variables via Fisher's exact test and logistic regression analysis.ResultsOf the 244 MG-positive samples received, 232 could be sequenced for macrolide and fluoroquinolone RAMs. Over half of the sequenced samples (55.2%) were resistant to macrolides. All sequenced samples from men who have sex with men (MSM) (24/24) were macrolide-resistant. Fluoroquinolone RAMs were found in 25.9% of the samples and occurrence did not differ between socio-demographic and sexual behaviour characteristics.ConclusionAlthough limited in sample size, our data suggest no additional benefit of testing MG retrieved from MSM for macrolide resistance in Belgium, when making treatment decisions. The lower occurrence of macrolide resistance in other population groups, combined with emergence of fluoroquinolone RAMs support macrolide-resistance testing in these groups. Continued surveillance of resistance in MG in different population groups will be crucial to confirm our findings and to guide national testing and treatment strategies.


Asunto(s)
Infecciones por Mycoplasma , Mycoplasma genitalium , Minorías Sexuales y de Género , Enfermedades de Transmisión Sexual , Masculino , Humanos , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Homosexualidad Masculina , Mycoplasma genitalium/genética , Bélgica/epidemiología , Macrólidos/farmacología , Farmacorresistencia Bacteriana/genética , Infecciones por Mycoplasma/tratamiento farmacológico , Infecciones por Mycoplasma/epidemiología , Mutación , ARN Ribosómico 23S/genética , Fluoroquinolonas/farmacología
2.
Viruses ; 14(6)2022 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-35746765

RESUMEN

From early 2020, a high demand for SARS-CoV-2 tests was driven by several testing indications, including asymptomatic cases, resulting in the massive roll-out of PCR assays to combat the pandemic. Considering the dynamic of viral shedding during the course of infection, the demand to report cycle threshold (Ct) values rapidly emerged. As Ct values can be affected by a number of factors, we considered that harmonization of semi-quantitative PCR results across laboratories would avoid potential divergent interpretations, particularly in the absence of clinical or serological information. A proposal to harmonize reporting of test results was drafted by the National Reference Centre (NRC) UZ/KU Leuven, distinguishing four categories of positivity based on RNA copies/mL. Pre-quantified control material was shipped to 124 laboratories with instructions to setup a standard curve to define thresholds per assay. For each assay, the mean Ct value and corresponding standard deviation was calculated per target gene, for the three concentrations (107, 105 and 103 copies/mL) that determine the classification. The results of 17 assays are summarized. This harmonization effort allowed to ensure that all Belgian laboratories would report positive PCR results in the same semi-quantitative manner to clinicians and to the national database which feeds contact tracing interventions.


Asunto(s)
COVID-19 , SARS-CoV-2 , Bélgica/epidemiología , COVID-19/diagnóstico , COVID-19/epidemiología , Humanos , Pandemias , Reacción en Cadena en Tiempo Real de la Polimerasa , SARS-CoV-2/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...