Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nature ; 626(7999): 617-625, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38081298

RESUMEN

The outer membrane in Gram-negative bacteria consists of an asymmetric phospholipid-lipopolysaccharide bilayer that is densely packed with outer-membrane ß-barrel proteins (OMPs) and lipoproteins1. The architecture and composition of this bilayer is closely monitored and is essential to cell integrity and survival2-4. Here we find that SlyB, a lipoprotein in the PhoPQ stress regulon, forms stable stress-induced complexes with the outer-membrane proteome. SlyB comprises a 10 kDa periplasmic ß-sandwich domain and a glycine zipper domain that forms a transmembrane α-helical hairpin with discrete phospholipid- and lipopolysaccharide-binding sites. After loss in lipid asymmetry, SlyB oligomerizes into ring-shaped transmembrane complexes that encapsulate ß-barrel proteins into lipid nanodomains of variable size. We find that the formation of SlyB nanodomains is essential during lipopolysaccharide destabilization by antimicrobial peptides or acute cation shortage, conditions that result in a loss of OMPs and compromised outer-membrane barrier function in the absence of a functional SlyB. Our data reveal that SlyB is a compartmentalizing transmembrane guard protein that is involved in cell-envelope proteostasis and integrity, and suggest that SlyB represents a larger family of broadly conserved lipoproteins with 2TM glycine zipper domains with the ability to form lipid nanodomains.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa , Membrana Celular , Bacterias Gramnegativas , Membrana Dobles de Lípidos , Proteínas de la Membrana Bacteriana Externa/química , Proteínas de la Membrana Bacteriana Externa/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Glicina/metabolismo , Lipopolisacáridos/metabolismo , Lipoproteínas/química , Lipoproteínas/metabolismo , Fosfolípidos/metabolismo , Sitios de Unión , Proteostasis , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Proteoma/química , Proteoma/metabolismo , Regulón , Dominios Proteicos , Péptidos Antimicrobianos/metabolismo , Bacterias Gramnegativas/química , Bacterias Gramnegativas/citología , Bacterias Gramnegativas/metabolismo
3.
Nat Chem Biol ; 17(10): 1093-1100, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34326538

RESUMEN

Gram-negative bacteria express structurally diverse lipoproteins in their cell envelope. Here, we find that approximately half of lipoproteins destined to the Escherichia coli outer membrane display an intrinsically disordered linker at their N terminus. Intrinsically disordered regions are common in proteins, but establishing their importance in vivo has remained challenging. As we sought to unravel how lipoproteins mature, we discovered that unstructured linkers are required for optimal trafficking by the Lol lipoprotein sorting system, whereby linker deletion re-routes three unrelated lipoproteins to the inner membrane. Focusing on the stress sensor RcsF, we found that replacing the linker with an artificial peptide restored normal outer-membrane targeting only when the peptide was of similar length and disordered. Overall, this study reveals the role played by intrinsic disorder in lipoprotein sorting, providing mechanistic insight into the biogenesis of these proteins and suggesting that evolution can select for intrinsic disorder that supports protein function.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas Intrínsecamente Desordenadas/metabolismo , Lipoproteínas/metabolismo , Proteínas de la Membrana Bacteriana Externa/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica/fisiología , Proteínas Intrínsecamente Desordenadas/química , Lipoproteínas/genética , Modelos Moleculares , Conformación Proteica , Transporte de Proteínas
4.
Nat Commun ; 5: 4366, 2014 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-25006695

RESUMEN

Several intracellular pathogens, such as Brucella abortus, display a biphasic infection process starting with a non-proliferative stage of unclear nature. Here, we study the cell cycle of B. abortus at the single-cell level, in culture and during infection of HeLa cells and macrophages. The localization of segregation and replication loci of the two bacterial chromosomes indicates that, immediately after being engulfed by host-cell endocytic vacuoles, most bacterial cells are newborn. These bacterial cells do not initiate DNA replication for the next 4 to 6 h, indicating a G1 arrest. Moreover, growth is completely stopped during that time, reflecting a global cell cycle block. Growth and DNA replication resume later, although bacteria still reside within endosomal-like compartments. We hypothesize that the predominance of G1-arrested bacteria in the infectious population, and the bacterial cell cycle arrest following internalization, may constitute a widespread strategy among intracellular pathogens to colonize new proliferation niches.


Asunto(s)
Brucella abortus/citología , Brucella abortus/patogenicidad , Brucelosis/patología , Puntos de Control de la Fase G1 del Ciclo Celular/fisiología , Brucella abortus/fisiología , Brucelosis/genética , Brucelosis/fisiopatología , Células Cultivadas , Cromosomas Bacterianos/genética , Cromosomas Bacterianos/fisiología , Replicación del ADN , ADN Bacteriano/genética , Puntos de Control de la Fase G1 del Ciclo Celular/genética , Células HeLa , Humanos , Vacuolas/microbiología , Vacuolas/fisiología
5.
Infect Immun ; 82(9): 3927-38, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25001604

RESUMEN

Brucella spp. are facultative intracellular Gram-negative coccobacilli responsible for brucellosis, a worldwide zoonosis. We observed that Brucella melitensis is able to persist for several weeks in the blood of intraperitoneally infected mice and that transferred blood at any time point tested is able to induce infection in naive recipient mice. Bacterial persistence in the blood is dramatically impaired by specific antibodies induced following Brucella vaccination. In contrast to Bartonella, the type IV secretion system and flagellar expression are not critically required for the persistence of Brucella in blood. ImageStream analysis of blood cells showed that following a brief extracellular phase, Brucella is associated mainly with the erythrocytes. Examination by confocal microscopy and transmission electron microscopy formally demonstrated that B. melitensis is able to invade erythrocytes in vivo. The bacteria do not seem to multiply in erythrocytes and are found free in the cytoplasm. Our results open up new areas for investigation and should serve in the development of novel strategies for the treatment or prophylaxis of brucellosis. Invasion of erythrocytes could potentially protect the bacterial cells from the host's immune response and hamper antibiotic treatment and suggests possible Brucella transmission by bloodsucking insects in nature.


Asunto(s)
Brucella melitensis/inmunología , Eritrocitos/inmunología , Animales , Sistemas de Secreción Bacterianos/inmunología , Vacuna contra la Brucelosis/inmunología , Brucelosis/inmunología , Brucelosis/microbiología , Eritrocitos/microbiología , Flagelos/inmunología , Flagelos/microbiología , Ratones , Ratones Endogámicos C57BL
6.
Microb Cell ; 1(10): 346-348, 2014 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-28357212

RESUMEN

Bacteria of the Brucella genus are responsible for brucellosis, a worldwide zoonosis. These bacteria are known to have a peculiar intracellular trafficking, with a first long and non-proliferative endosomal stage and a second proliferation stage, often associated with its localization of the bacteria in the endoplasmic reticulum (ER). However, the status of the bacterial cell cycle during the non-proliferative phase was still unknown. In a recent study [Nat. Communic. 5:4366], we followed the cell cycle of B. abortus in culture and inside the host cells. In culture, B. abortus initiates the replication of its large chromosome before the small chromosome. The origin and terminator regions of these two chromosomes display distinct localization and dynamics within B. abortus. In HeLa cells and RAW264.7 macrophages, the bacteria in G1 (i.e. before the initiation of chromosomes replication) are preferentially found during the endosomal stage of the infection. During this period, growth is also arrested. The cell cycle arrest and resume during the B. abortus trafficking in host cell suggest that like the model Alphaproteobacterium Caulobacter crescentus, these bacteria are able to block their cell cycle at the G1 phase when starvation is sensed.

7.
Protist ; 163(4): 602-15, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22186015

RESUMEN

Trypanosomes and Leishmanias are important human parasites whose cellular architecture is centred on the single flagellum. In trypanosomes, this flagellum is attached to the cell along a complex flagellum attachment zone (FAZ), comprising flagellar and cytoplasmic components, the integrity of which is required for correct cell morphogenesis and division. The cytoplasmic FAZ cytoskeleton is conspicuously associated with a sheet of endoplasmic reticulum termed the 'FAZ ER'. In the present work, 3D electron tomography of bloodstream form trypanosomes was used to clarify the nature of the FAZ ER. We also identified TbVAP, a T. brucei protein whose knockdown by RNAi in procyclic form cells leads to a dramatic reduction in the FAZ ER, and in the ER associated with the flagellar pocket. TbVAP is an orthologue of VAMP-associated proteins (VAPs), integral ER membrane proteins whose mutation in humans has been linked to familial motor neuron disease. The localisation of tagged TbVAP and the phenotype of TbVAP RNAi in procyclic form trypanosomes are consistent with a function for TbVAP in the maintenance of sub-populations of the ER associated with the FAZ and the flagellar pocket. Nevertheless, depletion of TbVAP did not affect cell viability or cell cycle progression.


Asunto(s)
Flagelos/fisiología , Proteínas Protozoarias/metabolismo , Trypanosoma brucei brucei/fisiología , Secuencia de Aminoácidos , Proteínas del Citoesqueleto/metabolismo , Proteínas del Citoesqueleto/ultraestructura , Tomografía con Microscopio Electrónico , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/ultraestructura , Flagelos/ultraestructura , Técnicas de Silenciamiento del Gen , Humanos , Imagenología Tridimensional , Proteínas de la Membrana/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Interferencia de ARN , Trypanosoma brucei brucei/ultraestructura
8.
PLoS One ; 5(10): e13274, 2010 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-20949000

RESUMEN

BACKGROUND: Inhibition of apoptosis is one of the mechanisms selected by numerous intracellular pathogenic bacteria to control their host cell. Brucellae, which are the causative agent of a worldwide zoonosis, prevent apoptosis of infected cells, probably to support survival of their replication niche. METHODOLOGY/PRINCIPAL FINDINGS: In order to identify Brucella melitensis anti-apoptotic effector candidates, we performed a genome-wide functional screening in yeast. The B. melitensis ORFeome was screened to identify inhibitors of Bax-induced cell death in S. cerevisiae. B. melitensis porin Omp2b, here shown to be essential, prevents Bax lethal effect in yeast, unlike its close paralog Omp2a. Our results based on Omp2b size variants characterization suggest that signal peptide processing is required for Omp2b effect in yeast. CONCLUSION/SIGNIFICANCE: We report here the first application to a bacterial genome-wide library of coding sequences of this "yeast-rescue" screening strategy, previously used to highlight several new apoptosis regulators. Our work provides B. melitensis proteins that are candidates for an anti-apoptotic function, and can be tested in mammalian cells in the future. Hypotheses on possible molecular mechanisms of Bax inhibition by the B. melitensis porin Omp2b are discussed.


Asunto(s)
Proteínas Bacterianas/metabolismo , Brucella melitensis/metabolismo , Muerte Celular/fisiología , Genoma Fúngico , Porinas/metabolismo , Levaduras/fisiología , Proteína X Asociada a bcl-2/fisiología , Proteínas Bacterianas/fisiología , Sistemas de Lectura Abierta , Porinas/fisiología , Levaduras/genética
9.
BMC Microbiol ; 10: 248, 2010 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-20920169

RESUMEN

BACKGROUND: When heterologous recombinant proteins are produced in Escherichia coli, they often precipitate to form insoluble aggregates of unfolded polypeptides called inclusion bodies. These structures are associated with chaperones like IbpA. However, there are reported cases of "non-classical" inclusion bodies in which proteins are soluble, folded and active. RESULTS: We report that the Brucella abortus PdhS histidine kinase fused to the mCherry fluorescent protein forms intermediate aggregates resembling "non-classical" inclusion bodies when overproduced in E. coli, before forming "classical" inclusion bodies. The intermediate aggregates of PdhS-mCherry are characterized by the solubility of PdhS-mCherry, its ability to specifically recruit known partners fused to YFP, suggesting that PdhS is folded in these conditions, and the quick elimination (in less than 10 min) of these structures when bacterial cells are placed on fresh rich medium. Moreover, soluble PdhS-mCherry foci do not systematically colocalize with IpbA-YFP, a marker of inclusion bodies. Instead, time-lapse experiments show that IbpA-YFP exhibits rapid pole-to-pole shuttling, until it partially colocalizes with PdhS-mCherry aggregates. CONCLUSION: The data reported here suggest that, in E. coli, recombinant proteins like PdhS-mCherry may transit through a soluble and folded state, resembling previously reported "non-classical" inclusion bodies, before forming "classical" inclusion bodies. The dynamic localization of IbpA-YFP foci suggests that the IbpA chaperone could scan the E. coli cell to find its substrates.


Asunto(s)
Proteínas Bacterianas/biosíntesis , Brucella abortus/metabolismo , Escherichia coli/metabolismo , Proteínas Quinasas/biosíntesis , Histidina Quinasa , Cuerpos de Inclusión/metabolismo , Chaperonas Moleculares/metabolismo , Pliegue de Proteína , Proteínas Recombinantes/biosíntesis , Solubilidad
10.
J Bacteriol ; 192(12): 3235-9, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20382762

RESUMEN

The bacterial pathogen Brucella abortus was recently demonstrated to recruit the essential cytoplasmic histidine kinase PdhS to its old pole. Here, we report identification of the fumarase FumC as a specific partner for the N-terminal "sensing" domain of PdhS, using an ORFeome-based yeast two-hybrid screen. We observed that FumC and PdhS colocalize at the old pole of B. abortus, while the other fumarase FumA is not polarly localized. FumC is not required for PdhS localization, and polar FumC localization is not FumA dependent. FumC homologs are not polarly localized in Sinorhizobium meliloti and Caulobacter crescentus, suggesting that polar recruitment of FumC by PdhS is evolutionarily recent.


Asunto(s)
Brucella abortus/enzimología , Fumarato Hidratasa/metabolismo , Proteínas Quinasas/metabolismo , Brucella abortus/genética , Brucella abortus/metabolismo , Eliminación de Gen , Regulación Bacteriana de la Expresión Génica/fisiología , Histidina Quinasa , Unión Proteica , Transporte de Proteínas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA