Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Sci Technol ; 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38323876

RESUMEN

Risk assessment of pesticide impacts on remote ecosystems makes use of model-estimated degradation in air. Recent studies suggest these degradation rates to be overestimated, questioning current pesticide regulation. Here, we investigated the concentrations of 76 pesticides in Europe at 29 rural, coastal, mountain, and polar sites during the agricultural application season. Overall, 58 pesticides were observed in the European atmosphere. Low spatial variation of 7 pesticides suggests continental-scale atmospheric dispersal. Based on concentrations in free tropospheric air and at Arctic sites, 22 pesticides were identified to be prone to long-range atmospheric transport, which included 15 substances approved for agricultural use in Europe and 7 banned ones. Comparison between concentrations at remote sites and those found at pesticide source areas suggests long atmospheric lifetimes of atrazine, cyprodinil, spiroxamine, tebuconazole, terbuthylazine, and thiacloprid. In general, our findings suggest that atmospheric transport and persistence of pesticides have been underestimated and that their risk assessment needs to be improved.

2.
Environ Epidemiol ; 8(1): e282, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38343739

RESUMEN

Background: Children in agricultural areas are exposed to organophosphate (OP) and pyrethroid (PYR) insecticides. This explorative study investigated child exposure to OPs and PYRs, comparing temporal and spatial exposure variability within and among urine, wristbands, and dust samples. Methods: During spraying season 2018, 38 South African children in two agricultural areas (Grabouw/Hex River Valley) and settings (farm/village) participated in a seven-day study. Child urine and household dust samples were collected on days 1 and 7. Children and their guardians were wearing silicone wristbands for seven days. Intraclass correlation coefficients (ICCs) evaluated temporal agreements between repeated urine and dust samples, Spearman rank correlations (Rs) evaluated the correlations among matrices, and linear mixed-effect models investigated spatial exposure predictors. A risk assessment was performed using reverse dosimetry. Results: Eighteen OPs/PYRs were targeted in urine, wristbands, and dust. Levels of chlorpyrifos in dust (ICC = 0.92) and diethylphosphate biomarker in urine (ICC = 0.42) showed strong and moderate temporal agreement between day 1 and day 7, respectively. Weak agreements were observed for all others. There was mostly a weak correlation among the three matrices (Rs = -0.12 to 0.35), except for chlorpyrifos in dust and its biomarker 3,5,6-trichloro-2-pyridinol in urine (Rs = 0.44). No differences in exposure levels between living locations were observed. However, 21% of the urine biomarker levels exceeded the health-risk threshold for OP exposure. Conclusions: Observed high short-term variability in exposure levels during spraying season highlights the need for repeated sampling. The weak correlation between the exposure matrices points to different environmental and behavioral exposure pathways. Exceeding risk thresholds for OP should be further investigated.

3.
Sci Total Environ ; 921: 170495, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38296070

RESUMEN

Polycyclic aromatic hydrocarbons (PAHs) and their oxygenated and nitrated derivatives, OPAHs and NPAHs, are semivolatile air pollutants which are distributed and cycling regionally. Subsequent to atmospheric deposition to and accumulation in soils they may re-volatilise, a secondary source which is understudied. We studied the direction of air-soil mass exchange fluxes of 12 OPAHs, 17 NPAHs, 25 PAHs and one alkylated PAH in two rural environments being influenced by the pollutant concentrations in soil and air, by season, and by land cover. The OPAHs and NPAHs in samples of topsoil, of ambient air particulate and gas phases and in the gas-phase equilibrated with soil were analysed by GC-APCI-MS/MS. The pollutants soil burdens show a pronounced seasonality, a winter maximum for NPAHs and PAHs and a summer maximum for OPAHs. One order of magnitude more OPAH and parent PAH are found stored in forest soil than in nearby grassland soil. Among a number of 3-4 ring PAHs, the OPAHs benzanthrone and 6H-benzo(c,d)pyren-6-one, and the NPAHs 1- and 2-nitronaphthalene, 9-nitrophenanthrene and 7-nitrobenz(a)anthracene are found to re-volatilise from soils at a rural background site in central Europe in summer. At a receptor site in northern Europe, net deposition of polycyclic aromatic compounds (PACs) prevails and re-volatilisation occurs only sporadic. Re-volatilisation of a number of PACs, including strong mutagens, from soils in summer and even in winter indicates that long-range atmospheric transport of primary PAC emissions from central Europe to receptor areas might be enhanced by secondary emissions from soils.

4.
Toxics ; 10(10)2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36287909

RESUMEN

Over the last decades, concern has arisen worldwide about the negative impacts of pesticides on the environment and human health. Exposure via dust ingestion is important for many chemicals but poorly characterized for pesticides, particularly in Africa. We investigated the spatial and temporal variations of 30 pesticides in dust and estimated the human exposure via dust ingestion, which was compared to inhalation and soil ingestion. Indoor dust samples were collected from thirty-eight households and two schools located in two agricultural regions in South Africa and were analyzed using high-performance liquid chromatography coupled to tandem mass spectrometry. We found 10 pesticides in dust, with chlorpyrifos, terbuthylazine, carbaryl, diazinon, carbendazim, and tebuconazole quantified in >50% of the samples. Over seven days, no significant temporal variations in the dust levels of individual pesticides were found. Significant spatial variations were observed for some pesticides, highlighting the importance of proximity to agricultural fields or of indoor pesticide use. For five out of the nineteen pesticides quantified in dust, air, or soil (i.e., carbendazim, chlorpyrifos, diazinon, diuron and propiconazole), human intake via dust ingestion was important (>10%) compared to inhalation or soil ingestion. Dust ingestion should therefore be considered in future human exposure assessment to pesticides.

6.
Sci Total Environ ; 807(Pt 1): 150455, 2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-34634720

RESUMEN

Concerns about the possible negative impacts of current use pesticides (CUPs) for both the environment and human health have increased worldwide. However, the knowledge on the occurrence of CUPs in soil and air and the related human exposure in Africa is limited. This study investigated the presence of 30 CUPs in soil and air at two distinct agricultural sites in South Africa and estimated the human exposure and related risks to rural residents via soil ingestion and inhalation (using hazard quotients, hazard index and relative potency factors). We collected 12 soil and 14 air samples over seven days during the main pesticide application season in 2018. All samples were extracted, purified and analyzed by high-performance liquid chromatography coupled with tandem mass spectrometry. In soils, nine CUPs were found, with chlorpyrifos, carbaryl and tebuconazole having the highest concentrations (up to 63.6, 1.10 and 0.212 ng g-1, respectively). In air, 16 CUPs were found, with carbaryl, tebuconazole and terbuthylazine having the highest levels (up to 25.0, 22.2 and 1.94 pg m-3, respectively). Spatial differences were observed between the two sites for seven CUPs in air and two in soils. A large dominance towards the particulate phase was found for almost all CUPs, which could be related to mass transport kinetics limitations (non-equilibrium) following pesticide application. The estimated daily intake via soil ingestion and inhalation of individual pesticides ranged from 0.126 fg kg-1 day-1 (isoproturon) to 14.7 ng kg-1 day-1 (chlorpyrifos). Except for chlorpyrifos, soil ingestion generally represented a minor exposure pathway compared to inhalation (i.e. <5%). The pesticide environmental exposure largely differed between the residents of the two distinct agricultural sites in terms of levels and composition. The estimated human health risks due to soil ingestion and inhalation of pesticides were negligible although future studies should explore other relevant pathways.


Asunto(s)
Cloropirifos , Plaguicidas , Exposición a Riesgos Ambientales , Monitoreo del Ambiente , Humanos , Plaguicidas/análisis , Suelo , Sudáfrica
7.
Sci Total Environ ; 812: 152330, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-34906574

RESUMEN

Little is known about personal and time-integrated exposure to past and current used pesticides in agricultural areas and within-family exposure similarities. We aimed to assess exposure to pesticides using silicone wristbands in child/guardian pairs living on farms and in villages within two agricultural areas in South Africa. Using silicone wristbands, we quantified 21 pesticides in child/guardian pairs in 38 households over six days in 2018. Levels (in ng/g wristband) of pesticides and their transformation products (12 current-use pesticides and nine organochlorine pesticides) were measured using GC-MS/MS. We assessed the correlation between pesticide levels and between household members using Spearman correlation coefficients (rs). Multivariable generalized least squares (GLS) models, using household id as intercept, were used to determine level of agreement between household members, exposure differences between children and guardians and exposure predictors (study area, household location [farm vs. village] and household pesticide use). We detected 16 pesticides with highest detection frequencies for deltamethrin (89%), chlorpyrifos (78%), boscalid (56%), cypermethrin (55%), and p,p'-DDT (48%). Most wristbands (92%) contained two or more pesticides (median seven (range one to 12)). Children had higher concentrations than guardians for four pesticides. Correlation between the pesticide levels were in most cases moderate (rs 0.30-0.68) and stronger in children than in guardians. Five pesticides showed moderate to strong correlation between household members, with the strongest correlation for boscalid (rs 0.84). Exposure differences between the two agricultural areas were observed for chlorpyrifos, diazinon, prothiofos, cypermethrin, boscalid, p,p'-DDT and p,p'-DDE and within areas for cypermethrin. We showed that for several pesticides children had higher exposure levels than guardians. The positive correlations observed for child/guardian pairs living in the same household suggest non-occupational shared exposure pathways in these communities.


Asunto(s)
Plaguicidas , Niño , Exposición a Riesgos Ambientales/análisis , Humanos , Plaguicidas/análisis , Siliconas , Sudáfrica , Espectrometría de Masas en Tándem
8.
Chemosphere ; 289: 133162, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34875296

RESUMEN

For decades pesticides have been used in agriculture, however, the occurrence of legacy organochlorine pesticides (OCPs) and current-use pesticides (CUPs) is poorly understood in Africa. This study investigates air concentrations of OCPs and CUPs in three South African agricultural areas, their spatial/seasonal variations and mixture profiles. Between 2017 and 2018, 54 polyurethane foam-disks passive air-samplers (PUF-PAS) were positioned in three agricultural areas of the Western Cape, producing mainly apples, table grapes and wheat. Within areas, 25 CUPs were measured at two sites (farm and village), and 27 OCPs at one site (farm). Kruskal-Wallis tests investigated area differences in OCPs concentrations, and linear mixed-effect models studied differences in CUPs concentrations between areas, sites and sampling rounds. In total, 20 OCPs and 16 CUPs were detected. A median of 16 OCPs and 10 CUPs were detected per sample, making a total of 11 OCPs and 24 CUPs combinations. Eight OCPs (trans-chlordane, o,p'-/p,p'-dichlorodiphenyldichloroethylene (DDE)/dichlorodiphenyltrichloroethane (DDT), endosulfan sulfate, γ-hexachlorocyclohexane and mirex) and two CUPs (carbaryl and chlorpyrifos) were quantified in all samples. p,p'-DDE (median 0.14 ng/m3) and chlorpyrifos (median 0.70 ng/m3) showed the highest concentrations throughout the study. Several OCPs and CUPs showed different concentrations between areas and seasons, although CUPs concentrations did not differ between sites. OCPs ratios suggest ongoing chlordane use in the region, while DDT and endosulfan contamination result from past-use. Our study revealed spatial and seasonal variations of different OCPs and CUPs combinations detected in air. Further studies are needed to investigate the potential cumulative or synergistic risks of the detected pesticides.


Asunto(s)
Contaminantes Atmosféricos , Hidrocarburos Clorados , Plaguicidas , Agricultura , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente , Hidrocarburos Clorados/análisis , Plaguicidas/análisis , Estaciones del Año , Sudáfrica
9.
Artículo en Inglés | MEDLINE | ID: mdl-34886269

RESUMEN

Using low-cost portable air quality (AQ) monitoring devices is a growing trend in personal exposure studies, enabling a higher spatio-temporal resolution and identifying acute exposure to high concentrations. Comprehension of the results by participants is not guaranteed in exposure studies. However, information on personal exposure is multiplex, which calls for participant involvement in information design to maximise communication output and comprehension. This study describes and proposes a model of a user-centred design (UCD) approach for preparing a final report for participants involved in a multi-sensor personal exposure monitoring study performed in seven cities within the EU Horizon 2020 ICARUS project. Using a combination of human-centred design (HCD), human-information interaction (HII) and design thinking approaches, we iteratively included participants in the framing and design of the final report. User needs were mapped using a survey (n = 82), and feedback on the draft report was obtained from a focus group (n = 5). User requirements were assessed and validated using a post-campaign survey (n = 31). The UCD research was conducted amongst participants in Ljubljana, Slovenia, and the results report was distributed among the participating cities across Europe. The feedback made it clear that the final report was well-received and helped participants better understand the influence of individual behaviours on personal exposure to air pollution.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Ciudades , Exposición a Riesgos Ambientales/análisis , Monitoreo del Ambiente , Europa (Continente) , Humanos
10.
Artículo en Inglés | MEDLINE | ID: mdl-34770131

RESUMEN

Use of a multi-sensor approach can provide citizens with holistic insights into the air quality of their immediate surroundings and their personal exposure to urban stressors. Our work, as part of the ICARUS H2020 project, which included over 600 participants from seven European cities, discusses the data fusion and harmonization of a diverse set of multi-sensor data streams to provide a comprehensive and understandable report for participants. Harmonizing the data streams identified issues with the sensor devices and protocols, such as non-uniform timestamps, data gaps, difficult data retrieval from commercial devices, and coarse activity data logging. Our process of data fusion and harmonization allowed us to automate visualizations and reports, and consequently provide each participant with a detailed individualized report. Results showed that a key solution was to streamline the code and speed up the process, which necessitated certain compromises in visualizing the data. A thought-out process of data fusion and harmonization of a diverse set of multi-sensor data streams considerably improved the quality and quantity of distilled data that a research participant received. Though automation considerably accelerated the production of the reports, manual and structured double checks are strongly recommended.


Asunto(s)
Contaminación del Aire , Ciudades , Humanos , Almacenamiento y Recuperación de la Información
11.
Sci Total Environ ; 793: 148528, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34328964

RESUMEN

Derivatives of polycyclic aromatic hydrocarbons (PAHs) such as nitrated- and oxygenated-PAHs (NPAHs and OPAHs) could be even more toxic and harmful for the environment and humans than PAHs. We assessed the spatial and seasonal variations of NPAHs and OPAHs atmospheric levels, their cancer risks and their gas-to-particle partitioning. To this end, about 250 samples of fine particulate matter (PM2.5) and 50 gaseous samples were collected in 2017 in central Europe in the cities of Brno and Ljubljana (two traffic and two urban background sites) as well as one rural site. The average particulate concentrations were ranging from below limit of quantification to 593 pg m-3 for Σ9NPAHs and from 1.64 to 4330 pg m-3 for Σ11OPAHs, with significantly higher concentrations in winter compared to summer. In winter, the particulate levels of NPAHs and OPAHs were higher at the traffic site compared to the urban background site in Brno while the opposite was found in Ljubljana. NPAHs and OPAHs particulate levels were influenced by the meteorological parameters and co-varied with several air pollutants. The significance of secondary formation on the occurrence of some NPAHs and OPAHs is indicated. In winter, 27-47% of samples collected at all sites were above the acceptable lifetime carcinogenic risk. The gas-particle partitioning of NPAHs and OPAHs was influenced by their physico-chemical properties, the season and the site-specific aerosol composition. Three NPAHs and five OPAHs had higher particulate mass fractions at the traffic site, suggesting they could be primarily emitted as particles from vehicle traffic and subsequently partitioning to the gas phase along air transport. This study underlines the importance of inclusion of the gas phase in addition to the particulate phase when assessing the atmospheric fate of polycyclic aromatic compounds and also when assessing the related health risk.


Asunto(s)
Contaminantes Atmosféricos , Neoplasias , Hidrocarburos Policíclicos Aromáticos , Contaminantes Atmosféricos/análisis , Ciudades , Monitoreo del Ambiente , Humanos , Neoplasias/epidemiología , Material Particulado/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Estaciones del Año
12.
Artículo en Inglés | MEDLINE | ID: mdl-33540146

RESUMEN

This study presents a novel sample preparation method for the determination of both specific and non-specific pesticide metabolites in human urine samples. The method combines a deconjugation step with QuEChERS-based method and solid-phase extraction. In total, 15 pesticide metabolites (diethyl phosphate; diethyl thiophosphate; dimethyl phosphate; diethyl thiophosphate; 2,4-dichlorophenoxyacetic acid; 3-phenoxybenzoic acid; 4-fluoro-3-phenoxybenzoic acid; coumaphos; diethyl dithiophosphate; malathion dicarboxylic acid; p-nitrophenol; cis/trans-3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropane carboxylic acid; 3,5,6-trichloro-2-pyridinol; N,N-diethyl-3-methylbenzamid and 2-isopropyl-4-methyl-6-hydroxypyrimidine) were separated using liquid chromatography coupled to a mass spectrometer and isotope dilution method for quantitation. The method was validated using recovery tests with recoveries generally ranging from 80 to 120%. Additionally, 20 urine samples collected from South African children were analysed using the presented method. The median levels of pesticide metabolites found in the urine samples ranged from not detected (N,N-diethyl-3-methylbenzamid) to 22.36 µg/g creatinine (dimethyl phosphate). The novel method developed in this study is sensitive, selective, robust and reproducible while also conserving the amount of sample, chemicals, material and time required. Due to the low limits of detection obtained for individual pesticide metabolites, the method is capable of quantifying trace levels of pesticide metabolites in urine, which thus makes it an ideal tool for biomonitoring studies.


Asunto(s)
Cromatografía Liquida/métodos , Espectrometría de Masas/métodos , Plaguicidas/orina , Adolescente , Niño , Exposición a Riesgos Ambientales/análisis , Femenino , Humanos , Límite de Detección , Masculino , Reproducibilidad de los Resultados , Sudáfrica
13.
Chemosphere ; 269: 128738, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33121801

RESUMEN

Nitrated and oxygenated polycyclic aromatic hydrocarbons (NPAHs, OPAHs) are abundant in the atmosphere and contribute significantly to the health risk associated with inhalation of polluted air. Despite the health hazard they pose, NPAHs and OPAHs were rarely included in monitoring. The aim of this study is to provide the first multi-year temporal trends of the concentrations, composition pattern and fate of NPAHs and OPAHs in air from a site representative of background air quality conditions in central Europe. Samples were collected every second week at a rural background site in the Czech Republic during 2015-2017. Concentrations ranged from 1.3 to 160 pg m-3 for Σ17NPAHs, from 32 to 2600 pg m-3 for Σ10OPAHs and from 5.1 to 4300 pg m-3 for Σ2O-heterocycles. The average particulate mass fraction (θ) ranged from 0.01 ± 0.02 (2-nitronaphthalene) to 0.83 ± 0.22 (1-nitropyrene) for individual NPAHs and from <0.01 ± 0.01 (dibenzofuran) to 0.96 ± 0.08 (6H-benzo (c,d)pyren-6-one) for individual OPAHs and O-heterocycles. The multiyear variations showed downward trends for a number of targeted compounds. This suggests that on-going emission reductions of PAHs are effective also for co-emitted NPAHs and OPAHs.


Asunto(s)
Contaminantes Atmosféricos , Hidrocarburos Policíclicos Aromáticos , Contaminantes Atmosféricos/análisis , República Checa , Monitoreo del Ambiente , Europa (Continente) , Humanos , Nitratos , Oxígeno/análisis , Material Particulado/análisis , Hidrocarburos Policíclicos Aromáticos/análisis
14.
Chemosphere ; 258: 127333, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32947666

RESUMEN

Increasing use of current-use pesticides (CUPs) in Africa raises environmental and public health concerns. But there is a large uncertainty about their occurrence and the composition of pesticide mixtures on this continent. This paper investigates the presence of 27 CUPs in air across 20 sampling sites in Africa. 166 passive air samples, consisting of polyurethane foam (PUF), were collected in 12 African countries between 2010 and 2018. Samples were extracted with methanol and analyzed via high-performance liquid chromatography coupled with tandem mass spectrometry. The detection frequencies of CUPs per site were compared to land use patterns and sampling years, while their similarities were assessed using hierarchical cluster analysis. Overall, 24 CUPs were detected at least once. In 93% of all samples, at least one CUP was detected, while 78% of the samples had mixtures of two or more CUPs (median 3, interquartile range 5). Atrazine and chlorpyrifos were detected in 19 out of 20 sampling sites. Carbaryl, metazachlor, simazine, tebuconazole and terbuthylazine had the highest detection frequencies at sampling sites dominated by croplands. Across all the sampling years, 16 CUPs were present. Seven CUPs were newly detected from 2016 onwards (azinfos-methyl, dimetachlor, chlorsulfuron, chlortoluron, isoproturon, prochloraz and pyrazon), while metamitron was only present before 2012. Sites within a radius of about 200 km showed similarities in detected CUP mixtures across all samples. Our results show the presence of CUP mixtures across multiple agricultural and urban locations in Africa which requires further investigation of related environmental and human health risks.


Asunto(s)
Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente , Plaguicidas/análisis , África , Agricultura , Atrazina/análisis , Cloropirifos/análisis , Humanos , Poliuretanos
15.
Environ Pollut ; 265(Pt B): 114851, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32474357

RESUMEN

A total of 74 high volume air samples were collected at a background site in Czech Republic from 2012 to 2014 in which the concentrations of 20 per- and polyfluoroalkyl substances (PFASs) were investigated. The total concentrations (gas + particle phase) ranged from 0.03 to 2.08 pg m-3 (average 0.52 pg m-3) for the sum of perfluoroalkyl carboxylic acids (∑PFCAs), from 0.02 to 0.85 pg m-3 (average 0.28 pg m-3) for the sum of perfluoroalkyl sulfonates (ΣPFSAs) and from below detection to 0.18 pg m-3 (average 0.05 pg m-3) for the sum of perfluorooctane sulfonamides and sulfonamidoethanols (ΣFOSA/Es). The gas phase concentrations of most PFASs were not controlled by temperature dependent sources but rather by long-range atmospheric transport. Air mass backward trajectory analysis showed that the highest concentrations of PFASs were mainly originating from continental areas. The average particle fractions (θ) of ΣPFCAs (θ = 0.74 ± 0.26) and ΣPFSAs (θ = 0.78 ± 0.22) were higher compared to ΣFOSA/Es (θ = 0.31 ± 0.35). However, they may be subject to sampling artefacts. This is the first study ever reporting PFASs concentrations in air samples collected over consecutive years. Significant decreases in 2012-2014 for PFOA, MeFOSE, EtFOSE and ∑PFCAs were observed with apparent half-lives of 1.01, 0.86, 0.92 and 1.94 years, respectively.


Asunto(s)
Fluorocarburos/análisis , Ácidos Carboxílicos , República Checa , Monitoreo del Ambiente , Europa (Continente)
16.
Chemosphere ; 240: 124852, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31542585

RESUMEN

This study presents four years ambient monitoring data of seventeen 2,3,7,8-chlorine substituted polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs), twelve dioxin-like polychlorinated biphenyls (dl-PCBs) and sixteen polycyclic aromatic hydrocarbons (PAHs) designed by the US EPA at a background site in central Europe during 2011-2014. The concentrations expressed as toxic equivalents (TEQs) using the WHO2005-scheme for PCDD/Fs (0.2 fg m-3-61.1 fg m-3) were higher than for dl-PCBs (0.01 fg m-3-2.9 fg m-3), while the opposite was found in terms of mass concentrations. ΣPAHs ranged from 0.20 ng m-3 to 134 ng m-3. The mass concentration profile of PCDD/Fs, dl-PCBs and PAHs was similar throughout the four years. PCDD/Fs and PAHs concentrations were dominated by primary sources peaking in winter, while those of dl-PCBs were controlled by secondary sources characterized by a spring-summer peak. During 2011-2014, no significant decrease in the atmospheric levels of ΣPCDD/Fs was observed. On the other hand, the concentrations of Σdl-PCBs and ΣPAHs were decreasing, with halving times of 5.7 and 2.7 years, respectively. We estimated that 422 pg m-2 year-1-567 pg m-2 year-1 TEQ PCDD/Fs and 3.48 pg m-2 year-1-15.8 pg m-2 year-1 TEQ dl-PCBs were transferred from the air to the ground surfaces via dry particulate deposition during 2011-2014.


Asunto(s)
Contaminantes Atmosféricos/análisis , Dibenzofuranos Policlorados/análisis , Dibenzodioxinas Policloradas/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , República Checa , Monitoreo del Ambiente , Bifenilos Policlorados/análisis , Estaciones del Año
17.
Environ Sci Pollut Res Int ; 26(23): 23429-23441, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31201702

RESUMEN

Polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) are ubiquitous and toxic contaminants. Their atmospheric deposition fluxes on the regional scale were quantified based on simultaneous sampling during 1 to 5 years at 1 to 6 background/rural sites in the Czech Republic and Austria. The samples were extracted and analysed by means of gas chromatography coupled to mass spectrometry. For all seasons and sites, total deposition fluxes for Σ15PAHs ranged 23-1100 ng m-2 d-1, while those for Σ6PCBs and Σ12OCPs ranged 64-4400 and 410-7800 pg m-2 d-1, respectively. Fluoranthene and pyrene were the main contributors to the PAH deposition fluxes, accounting on average for 19% each, while deposition fluxes of PCBs and OCPs were dominated by PCB153 (26%) and γ-hexachlorobenzene (30%), respectively. The highest deposition flux of Σ15PAHs was generally found in spring, while no seasonality was found for PCB deposition. For deposition fluxes for Σ12OCPs, no clear spatial trend was found, confirming the perception of long-lived regional pollutants. Although most OCPs and PCBs hardly partition to the particulate phase in ambient air, on average, 42% of their deposition fluxes were found on filters, confirming the perception that particle deposition is more efficient than dry gaseous deposition. Due to methodological constraints, fluxes derived from bulk deposition samplers should be understood as lower estimates, in particular with regard to those substances which in ambient aerosols mostly partition to the particulate phase.


Asunto(s)
Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente , Hidrocarburos Policíclicos Aromáticos/análisis , Austria , República Checa , Europa (Continente) , Cromatografía de Gases y Espectrometría de Masas , Hexaclorobenceno/análisis , Hidrocarburos Clorados/análisis , Plaguicidas/análisis , Bifenilos Policlorados/análisis
18.
Environ Sci Technol ; 50(8): 4278-88, 2016 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-27007480

RESUMEN

Concentrations of polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), and polybrominated diphenyl ethers (PBDEs) in air and soil, their fugacities, and the experimental soil-air partitioning coefficient (KSA) were determined at two background sites in the Gt. Hungarian Plain in August 2013. The concentrations of the semivolatile organic compounds (SOCs) in the soil were not correlated with the organic carbon content but with two indirect parameters of mineralization and aromaticity, suggesting that soil organic matter quality is an important parameter affecting the sorption of SOCs onto soils. Predictions based on the assumption that absorption is the dominant process were in good agreement with the measurements for PAHs, OCPs, and the low chlorinated PCBs. In general, soils were found to be a source of PAHs, high chlorinated PCBs, the majority of OCPs and PBDEs, and a sink for the low chlorinated PCBs and γ-hexachlorocyclohexane. Diurnal variations in the direction of the soil-air exchange were found for two compounds (i.e., pentachlorobenzene and p,p'-dichlorodiphenyldichloroethane), with volatilization during the day and deposition in the night. The concentrations of most SOCs in the near-ground atmosphere were dominated by revolatilization from the soil.


Asunto(s)
Contaminantes Atmosféricos/análisis , Plaguicidas/análisis , Bifenilos Policlorados/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Compuestos Orgánicos Volátiles/análisis , Atmósfera , Clorobencenos/análisis , Monitoreo del Ambiente , Hexaclorociclohexano/análisis , Hungría , Hidrocarburos Clorados/análisis , Suelo/química , Contaminantes del Suelo/análisis
19.
Environ Sci Technol ; 48(24): 14426-34, 2014 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-25380095

RESUMEN

This study investigates the distribution of polybrominated diphenyl ethers (PBDEs), hexabromocyclododecane (HBCD) and a group of novel flame retardants (NFRs) on atmospheric aerosols. Two high volume cascade impactors were used to collect particulate fractions of ambient air over a one year period at urban and rural sites. The majority of FRs were found on the finest aerosols (<0.95 µm). Concentrations of HBCD were higher than those of ΣPBDEs. Moreover, we noted seasonality and spatial differences in particle size distributions, yet a large portion of the observed differences were due to differences in particulate matter (PM) itself. When normalized by PM, the size distributions of the FRs exhibited much greater heterogeneity. Differences existed between the FR distributions by molecular weight, with the higher molecular weight FRs (e.g., BDE-209, Dechlorane Plus) distributed more uniformly across all particulate size fractions. The seasonal, spatial, and compound-specific differences are of crucial importance when estimating dry and wet deposition of FRs as smaller aerosols have longer atmospheric residence times. Estimated wet and dry deposition of four representative FRs (BDE-47, BDE-209, HBCD, and Dechlorane Plus) using size-segregated aerosol data resulted in lower deposition estimates than when bulk aerosol data were used. This has implications for estimates of long-range atmospheric transport and atmospheric residence times, as it suggests that without size-specific distributions, these parameters could be underestimated for FRs.


Asunto(s)
Contaminantes Atmosféricos/análisis , Derivados del Benceno/análisis , Retardadores de Llama/análisis , Éteres Difenilos Halogenados/análisis , Hidrocarburos Halogenados/análisis , Aerosoles , República Checa , Monitoreo del Ambiente/métodos , Tamaño de la Partícula
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...