Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 8598, 2024 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-38615146

RESUMEN

Pseudomonas aeruginosa is a major cause of nosocomial infections and the leading cause of chronic lung infections in cystic fibrosis and chronic obstructive pulmonary disease patients. Antibiotic treatment remains challenging because P. aeruginosa is resistant to high concentrations of antibiotics and has a remarkable ability to acquire mutations conferring resistance to multiple groups of antimicrobial agents. Here we report that when P. aeruginosa is plated on ciprofloxacin (cipro) plates, the majority of cipro-resistant (ciproR) colonies observed at and after 48 h of incubation carry mutations in genes related to the Stringent Response (SR). Mutations in one of the major SR components, spoT, were present in approximately 40% of the ciproR isolates. Compared to the wild-type strain, most of these isolates had decreased growth rate, longer lag phase and altered intracellular ppGpp content. Also, 75% of all sequenced mutations were insertions and deletions, with short deletions being the most frequently occurring mutation type. We present evidence that most of the observed mutations are induced on the selective plates in a subpopulation of cells that are not instantly killed by cipro. Our results suggests that the SR may be an important contributor to antibiotic resistance acquisition in P. aeruginosa.


Asunto(s)
Ciprofloxacina , Infecciones por Pseudomonas , Humanos , Ciprofloxacina/farmacología , Pseudomonas aeruginosa/genética , Infecciones por Pseudomonas/tratamiento farmacológico , Antibacterianos/farmacología , Placas Óseas
2.
NAR Cancer ; 6(1): zcae006, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38384388

RESUMEN

Base excision repair is critical for maintaining genomic stability and for preventing malignant transformation. NTHL1 is a bifunctional DNA glycosylase/AP lyase that initiates repair of oxidatively damaged pyrimidines. Our recent work established that transient over-expression of NTHL1 leads to acquisition of several hallmarks of cancer in non-tumorigenic immortalized cells likely through interaction with nucleotide excision repair protein XPG. Here, we investigate how NTHL1 expression levels impact cellular sensitivity to cisplatin in non-tumorigenic immortalized cells and five non-small cell lung carcinomas cell lines. The cell line with lowest expression of NTHL1 (H522) shows the highest resistance to cisplatin indicating that decrease in NTHL1 levels may modulate resistance to crosslinking agents in NSCLC tumors. In a complementation study, overexpression of NTHL1 in H522 cell line sensitized it to cisplatin. Using NTHL1 N-terminal deletion mutants defective in nuclear localization we show that cisplatin treatment can alter NTHL1 subcellular localization possibly leading to altered protein-protein interactions and affecting cisplatin sensitivity. Experiments presented in this study reveal a previously unknown link between NTHL1 expression levels and cisplatin sensitivity of NSCLC tumor cells. These findings provide an opportunity to understand how altered NTHL1 expression levels and subcellular distribution can impact cisplatin sensitivity in NSCLC tumor cells.

3.
Nucleic Acids Res ; 51(10): 5056-5072, 2023 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-37078607

RESUMEN

Mutational signatures discerned in cancer genomes, in aging tissues and in cells exposed to toxic agents, reflect complex processes underlying transformation of cells from normal to dysfunctional. Due to its ubiquitous and chronic nature, redox stress contributions to cellular makeover remain equivocal. The deciphering of a new mutational signature of an environmentally-relevant oxidizing agent, potassium bromate, in yeast single strand DNA uncovered a surprising heterogeneity in the mutational signatures of oxidizing agents. NMR-based analysis of molecular outcomes of redox stress revealed profound dissimilarities in metabolic landscapes following exposure to hydrogen peroxide versus potassium bromate. The predominance of G to T substitutions in the mutational spectra distinguished potassium bromate from hydrogen peroxide and paraquat and mirrored the observed metabolic changes. We attributed these changes to the generation of uncommon oxidizing species in a reaction with thiol-containing antioxidants; a nearly total depletion of intracellular glutathione and a paradoxical augmentation of potassium bromate mutagenicity and toxicity by antioxidants. Our study provides the framework for understanding multidimensional processes triggered by agents collectively known as oxidants. Detection of increased mutational loads associated with potassium bromate-related mutational motifs in human tumors may be clinically relevant as a biomarker of this distinct type of redox stress.


Asunto(s)
Antioxidantes , Neoplasias , Humanos , Peróxido de Hidrógeno/toxicidad , Mutación , Oxidación-Reducción , Neoplasias/genética , Oxidantes
5.
PLoS Biol ; 17(5): e3000263, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31067233

RESUMEN

Redox stress is a major hallmark of cancer. Analysis of thousands of sequenced cancer exomes and whole genomes revealed distinct mutational signatures that can be attributed to specific sources of DNA lesions. Clustered mutations discovered in several cancer genomes were linked to single-strand DNA (ssDNA) intermediates in various processes of DNA metabolism. Previously, only one clustered mutational signature had been clearly associated with a subclass of ssDNA-specific apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like (APOBEC) cytidine deaminases. Others remain to be elucidated. We report here deciphering of the mutational spectra and mutational signature of redox stress in ssDNA of budding yeast and the signature of aging in human mitochondrial DNA. We found that the predominance of C to T substitutions is a common feature of both signatures. Measurements of the frequencies of hydrogen peroxide-induced mutations in proofreading-defective yeast mutants supported the conclusion that hydrogen peroxide-induced mutagenesis is not the result of increased DNA polymerase misincorporation errors but rather is caused by direct damage to DNA. Proteins involved in modulation of chromatin status play a significant role in prevention of redox stress-induced mutagenesis, possibly by facilitating protection through modification of chromatin structure. These findings provide an opportunity for the search and identification of the mutational signature of redox stress in cancers and in other pathological conditions and could potentially be used for informing therapeutic decisions. In addition, the discovery of such signatures that may be present in related organisms should also advance our understanding of evolution.


Asunto(s)
Envejecimiento/genética , ADN Mitocondrial/genética , ADN de Cadena Simple/genética , Mutación/genética , Saccharomyces cerevisiae/genética , Estrés Fisiológico/genética , Secuencia de Bases , Daño del ADN/genética , ADN Polimerasa Dirigida por ADN/metabolismo , Humanos , Peróxido de Hidrógeno/toxicidad , Mutagénesis/genética , Tasa de Mutación , Neoplasias/genética , Oxidación-Reducción , Paraquat/toxicidad
6.
Eur J Med Chem ; 163: 381-393, 2019 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-30530174

RESUMEN

The development of new ligands that have comparable or enhanced therapeutic efficacy relative to current drugs is vital to the health of the global community in the short and long term. One strategy to accomplish this goal is to functionalize sites on current antimicrobials to enhance specificity and affinity while abating resistance mechanisms of infectious organisms. Herein, we report the synthesis of a series of pyrene-neomycin B (PYR-NEO) conjugates, their binding affinity to A-site RNA targets, resistance to aminoglycoside-modifying enzymes (AMEs), and antibacterial activity against a wide variety of bacterial strains of clinical relevance. PYR-NEO conjugation significantly alters the affinities of NEO for bacterial A-site targets. The conjugation of PYR to NEO significantly increased the resistance of NEO to AME modification. PYR-NEO conjugates exhibited broad-spectrum activity towards Gram-positive bacteria, including improved activity against NEO-resistant methicillin-resistant Staphylococcus aureus (MRSA) strains.


Asunto(s)
Aminoglicósidos/farmacología , Farmacorresistencia Bacteriana/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Infecciones Estafilocócicas/tratamiento farmacológico , Animales , Sitios de Unión , Framicetina/química , Bacterias Grampositivas/efectos de los fármacos , Humanos , Unión Proteica , Pirenos/química , Proteínas Ribosómicas
7.
Biochemistry ; 56(40): 5288-5299, 2017 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-28895721

RESUMEN

Diversity in eukaryotic rRNA structure and function offers possibilities of therapeutic targets. Unlike ribosomes of prokaryotes, eukaryotic ribosomes contain species-specific rRNA expansion segments (ESs) with idiosyncratic structures and functions that are essential and specific to some organisms. Here we investigate expansion segment 7 (ES7), one of the largest and most variable expansions of the eukaryotic ribosome. We hypothesize that ES7 of the pathogenic fungi Candida albicans (ES7CA) could be a prototypic drug target. We show that isolated ES7CA folds reversibly to a native-like state. We developed a fluorescence displacement assay using an RNA binding fluorescent probe, F-neo. F-neo binds tightly to ES7CA with a Kd of 2.5 × 10-9 M but binds weakly to ES7 of humans (ES7HS) with a Kd estimated to be greater than 7 µM. The fluorescence displacement assay was used to investigate the affinities of a library of peptidic aminosugar conjugates (PAs) for ES7CA. For conjugates with highest affinities for ES7CA (NeoRH, NeoFH, and NeoYH), the lowest dose needed to induce mortality in C. albicans (minimum inhibitory concentration, MIC) was determined. PAs with the lowest MIC values were tested for cytotoxicity in HEK293T cells. Molecules with high affinity for ES7CA in vitro induce mortality in C. albicans but not in HEK293T cells. The results are consistent with the hypothesis that ESs represent useful targets for chemotherapeutics directed against eukaryotic pathogens.


Asunto(s)
Antifúngicos/farmacología , Candida albicans/citología , Candida albicans/efectos de los fármacos , Ribosomas/efectos de los fármacos , Ribosomas/metabolismo , Antifúngicos/toxicidad , Candida albicans/metabolismo , Células HEK293 , Humanos , Concentración 50 Inhibidora , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Conformación Proteica , Desplegamiento Proteico , Ribosomas/química , Temperatura
8.
Yeast ; 34(11): 447-458, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28752642

RESUMEN

The DNA is cells is continuously exposed to reactive oxygen species resulting in toxic and mutagenic DNA damage. Although the repair of oxidative DNA damage occurs primarily through the base excision repair (BER) pathway, the nucleotide excision repair (NER) pathway processes some of the same lesions. In addition, damage tolerance mechanisms, such as recombination and translesion synthesis, enable cells to tolerate oxidative DNA damage, especially when BER and NER capacities are exceeded. Thus, disruption of BER alone or disruption of BER and NER in Saccharomyces cerevisiae leads to increased mutations as well as large-scale genomic rearrangements. Previous studies demonstrated that a particular region of chromosome II is susceptible to chronic oxidative stress-induced chromosomal rearrangements, suggesting the existence of DNA damage and/or DNA repair hotspots. Here we investigated the relationship between oxidative damage and genomic instability utilizing chromatin immunoprecipitation combined with DNA microarray technology to profile DNA repair sites along yeast chromosomes under different oxidative stress conditions. We targeted the major yeast AP endonuclease Apn1 as a representative BER protein. Our results indicate that Apn1 target sequences are enriched for cytosine and guanine nucleotides. We predict that BER protects these sites in the genome because guanines and cytosines are thought to be especially susceptible to oxidative attack, thereby preventing large-scale genome destabilization from chronic accumulation of DNA damage. Information from our studies should provide insight into how regional deployment of oxidative DNA damage management systems along chromosomes protects against large-scale rearrangements. Copyright © 2017 John Wiley & Sons, Ltd.


Asunto(s)
Mapeo Cromosómico , Enzimas Reparadoras del ADN/metabolismo , Endodesoxirribonucleasas/metabolismo , Estrés Oxidativo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Sitios de Unión/genética , Daño del ADN , Reparación del ADN , Enzimas Reparadoras del ADN/química , Endodesoxirribonucleasas/química , Inestabilidad Genómica , Especies Reactivas de Oxígeno/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química
9.
ACS Infect Dis ; 3(3): 206-215, 2017 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-28103015

RESUMEN

The antibacterial effects of aminoglycosides are based on their association with the A-site of bacterial rRNA and interference with the translational process in the bacterial cell, causing cell death. The clinical use of aminoglycosides is complicated by resistance and side effects, some of which arise from their interactions with the human mitochondrial 12S rRNA and its deafness-associated mutations, C1494U and A1555G. We report a rapid assay that allows screening of aminoglycoside compounds to these classes of rRNAs. These screening tools are important to find antibiotics that selectively bind to the bacterial A-site rather than human, mitochondrial A-sites and its mutant homologues. Herein, we report our preliminary work on the optimization of this screen using 12 anthraquinone-neomycin (AMA-NEO) conjugates against molecular constructs representing five A-site homologues, Escherichia coli, human cytosolic, mitochondrial, C1494U, and A1555G, using a fluorescent displacement screening assay. These conjugates were also tested for inhibition of protein synthesis, antibacterial activity against 14 clinically relevant bacterial strains, and the effect on enzymes that inactivate aminoglycosides. The AMA-NEO conjugates demonstrated significantly improved resistance against aminoglycoside-modifying enzymes (AMEs), as compared with NEO. Several compounds exhibited significantly greater inhibition of prokaryotic protein synthesis as compared to NEO and were extremely poor inhibitors of eukaryotic translation. There was significant variation in antibacterial activity and MIC of selected compounds between bacterial strains, with Escherichia coli, Enteroccocus faecalis, Citrobacter freundii, Shigella flexneri, Serratia marcescens, Proteus mirabilis, Enterobacter cloacae, Staphylococcus epidermidis, and Listeria monocytogenes exhibiting moderate to high sensitivity (50-100% growth inhibition) whereas Acinetobacter baumannii, Pseudomonas aeruginosa, Klebsiellla pneumoniae, and MRSA strains expressed low sensitivity, as compared to the parent aminoglycoside NEO.


Asunto(s)
Aminoglicósidos/farmacología , Antiinfecciosos/farmacología , ARN Ribosómico/antagonistas & inhibidores , Aminoglicósidos/química , Antraquinonas/química , Antraquinonas/farmacología , Antiinfecciosos/química , Sitios de Unión , Farmacorresistencia Microbiana/efectos de los fármacos , Humanos , Pruebas de Sensibilidad Microbiana , Mutación , Neomicina/química , Neomicina/farmacología , ARN Bacteriano/antagonistas & inhibidores , ARN Bacteriano/química , ARN Ribosómico/química , ARN Ribosómico/genética
10.
DNA Repair (Amst) ; 48: 51-62, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27839712

RESUMEN

DNA damaging agents are a constant threat to genomes in both the nucleus and the mitochondria. To combat this threat, a suite of DNA repair pathways cooperate to repair numerous types of DNA damage. If left unrepaired, these damages can result in the accumulation of mutations which can lead to deleterious consequences including cancer and neurodegenerative disorders. The base excision repair (BER) pathway is highly conserved from bacteria to humans and is primarily responsible for the removal and subsequent repair of toxic and mutagenic oxidative DNA lesions. Although the biochemical steps that occur in the BER pathway have been well defined, little is known about how the BER machinery is regulated. The budding yeast, Saccharomyces cerevisiae is a powerful model system to biochemically and genetically dissect BER. BER is initiated by DNA N-glycosylases, such as S. cerevisiae Ntg1. Previous work demonstrates that Ntg1 is post-translationally modified by SUMO in response to oxidative DNA damage suggesting that this modification could modulate the function of Ntg1. In this study, we mapped the specific sites of SUMO modification within Ntg1 and identified the enzymes responsible for sumoylating/desumoylating Ntg1. Using a non-sumoylatable version of Ntg1, ntg1ΔSUMO, we performed an initial assessment of the functional impact of Ntg1 SUMO modification in the cellular response to DNA damage. Finally, we demonstrate that, similar to Ntg1, the human homologue of Ntg1, NTHL1, can also be SUMO-modified in response to oxidative stress. Our results suggest that SUMO modification of BER proteins could be a conserved mechanism to coordinate cellular responses to DNA damage.


Asunto(s)
Reparación del ADN , ADN-(Sitio Apurínico o Apirimidínico) Liasa/genética , Procesamiento Proteico-Postraduccional , Proteína SUMO-1/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Daño del ADN , ADN de Hongos/genética , ADN de Hongos/metabolismo , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , Desoxirribonucleasa (Dímero de Pirimidina)/genética , Desoxirribonucleasa (Dímero de Pirimidina)/metabolismo , Humanos , Peróxido de Hidrógeno/farmacología , Mesilatos/farmacología , Modelos Moleculares , Mapeo Peptídico , Dominios Proteicos , Estructura Secundaria de Proteína , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteína SUMO-1/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Sumoilación
11.
Medchemcomm ; 7(1): 164-169, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26811742

RESUMEN

The nucleotides comprising the ribosomal decoding center are highly conserved, as they are important for maintaining translational fidelity. The bacterial A-site has a small base variation as compared with the human analogue, allowing aminoglycoside (AG) antibiotics to selectively bind within this region of the ribosome and negatively affect microbial protein synthesis. Here, by using a fluorescence displacement screening assay, we demonstrate that neomycin B (NEO) dimers connected by L-arginine-containing linkers of varying length and composition bind with higher affinity to model A-site RNAs compared to NEO, with IC50 values ranging from ~40-70 nM, and that a certain range of linker lengths demonstrates a clear preference for the bacterial A-site RNA over the human analogue. Furthermore, AG-modifying enzymes (AMEs), such as AG O-phosphotransferases, which are responsible for conferring antibiotic resistance in many types of infectious bacteria, demonstrate markedly reduced activity against several of the L-arginine-linked NEO dimers in vitro. The antimicrobial activity of these dimers against several bacterial strains is weaker than that of the parent NEO.

12.
PLoS Genet ; 11(8): e1005477, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26305558

RESUMEN

Adaptive mutation refers to the continuous outgrowth of new mutants from a non-dividing cell population during selection, in apparent violation of the neo-Darwinian principle that mutation precedes selection. One explanation is that of retromutagenesis, in which a DNA lesion causes a transcriptional mutation that yields a mutant protein, allowing escape from selection. This enables a round of DNA replication that establishes heritability. Because the model requires that gene expression precedes DNA replication, it predicts that during selection, new mutants will arise from damage only to the transcribed DNA strand. As a test, we used a lacZ amber mutant of Escherichia coli that can revert by nitrous acid-induced deamination of adenine residues on either strand of the TAG stop codon, each causing different DNA mutations. When stationary-phase, mutagenized cells were grown in rich broth before being plated on lactose-selective media, only non-transcribed strand mutations appeared in the revertants. This result was consistent with the known high sensitivity to deamination of the single-stranded DNA in a transcription bubble, and it provided an important control because it demonstrated that the genetic system we would use to detect transcribed-strand mutations could also detect a bias toward the non-transcribed strand. When residual lacZ transcription was blocked beforehand by catabolite repression, both strands were mutated about equally, but if revertants were selected immediately after nitrous acid exposure, transcribed-strand mutations predominated among the revertants, implicating retromutagenesis as the mechanism. This result was not affected by gene orientation. Retromutagenesis is apt to be a universal method of evolutionary adaptation, which enables the emergence of new mutants from mutations acquired during counterselection rather than beforehand, and it may have roles in processes as diverse as the development of antibiotic resistance and neoplasia.


Asunto(s)
Escherichia coli/genética , Evolución Molecular , Adaptación Biológica , Genes Bacterianos , Modelos Genéticos , Mutagénesis
13.
PLoS One ; 8(11): e81162, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24260552

RESUMEN

Cisplatin is one of the most effective and widely used anticancer agents for the treatment of several types of tumors. The cytotoxic effect of cisplatin is thought to be mediated primarily by the generation of nuclear DNA adducts, which, if not repaired, cause cell death as a consequence of DNA replication and transcription blockage. However, the ability of cisplatin to induce nuclear DNA (nDNA) damage per se is not sufficient to explain its high degree of effectiveness nor the toxic effects exerted on normal, post-mitotic tissues. Oxidative damage has been observed in vivo following exposure to cisplatin in several tissues, suggesting a role for oxidative stress in the pathogenesis of cisplatin-induced dose-limiting toxicities. However, the mechanism of cisplatin-induced generation of ROS and their contribution to cisplatin cytotoxicity in normal and cancer cells is still poorly understood. By employing a panel of normal and cancer cell lines and the budding yeast Saccharomyces cerevisiae as model system, we show that exposure to cisplatin induces a mitochondrial-dependent ROS response that significantly enhances the cytotoxic effect caused by nDNA damage. ROS generation is independent of the amount of cisplatin-induced nDNA damage and occurs in mitochondria as a consequence of protein synthesis impairment. The contribution of cisplatin-induced mitochondrial dysfunction in determining its cytotoxic effect varies among cells and depends on mitochondrial redox status, mitochondrial DNA integrity and bioenergetic function. Thus, by manipulating these cellular parameters, we were able to enhance cisplatin cytotoxicity in cancer cells. This study provides a new mechanistic insight into cisplatin-induced cell killing and may lead to the design of novel therapeutic strategies to improve anticancer drug efficacy.


Asunto(s)
Antineoplásicos/farmacología , Cisplatino/farmacología , Reparación del ADN/efectos de los fármacos , ADN/química , Mitocondrias/efectos de los fármacos , Especies Reactivas de Oxígeno/agonistas , Animales , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , ADN/metabolismo , Aductos de ADN/química , Daño del ADN , Humanos , Ratones , Mitocondrias/metabolismo , Oxidación-Reducción , Especies Reactivas de Oxígeno/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
14.
J Biol Chem ; 288(47): 34158-34167, 2013 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-24100036

RESUMEN

Nab3 and Nrd1 are yeast heterogeneous nuclear ribonucleoprotein (hnRNP)-like proteins that heterodimerize and bind RNA. Genetic and biochemical evidence reveals that they are integral to the termination of transcription of short non-coding RNAs by RNA polymerase II. Here we define a Nab3 mutation (nab3Δ134) that removes an essential part of the protein's C terminus but nevertheless can rescue, in trans, the phenotype resulting from a mutation in the RNA recognition motif of Nab3. This low complexity region of Nab3 appears intrinsically unstructured and can form a hydrogel in vitro. These data support a model in which multiple Nrd1-Nab3 heterodimers polymerize onto substrate RNA to effect termination, allowing complementation of one mutant Nab3 molecule by another lacking a different function. The self-association property of Nab3 adds to the previously documented interactions between these hnRNP-like proteins, RNA polymerase II, and the nascent transcript, leading to a network of nucleoprotein interactions that define a higher order Nrd1-Nab3 complex. This was underscored from the synthetic phenotypes of yeast strains with pairwise combinations of Nrd1 and Nab3 mutations known to affect their distinct biochemical activities. The mutations included a Nab3 self-association defect, a Nab3-Nrd1 heterodimerization defect, a Nrd1-polymerase II binding defect, and an Nab3-RNA recognition motif mutation. Although no single mutation was lethal, cells with any two mutations were not viable for four such pairings, and a fifth displayed a synthetic growth defect. These data strengthen the idea that a multiplicity of interactions is needed to assemble a higher order Nrd1-Nab3 complex that coats specific nascent RNAs in preparation for termination.


Asunto(s)
Complejos Multiproteicos/metabolismo , Proteínas Nucleares/metabolismo , ARN de Hongos/biosíntesis , Proteínas de Unión al ARN/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Terminación de la Transcripción Genética/fisiología , Secuencias de Aminoácidos , Complejos Multiproteicos/genética , Mutación , Proteínas Nucleares/genética , Multimerización de Proteína/fisiología , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , ARN de Hongos/genética , Proteínas de Unión al ARN/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
15.
Nucleic Acids Res ; 41(19): 8995-9005, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23925127

RESUMEN

Localized hyper-mutability caused by accumulation of lesions in persistent single-stranded (ss) DNA has been recently found in several types of cancers. An increase in endogenous levels of reactive oxygen species (ROS) is considered to be one of the hallmarks of cancers. Employing a yeast model system, we addressed the role of oxidative stress as a potential source of hyper-mutability in ssDNA by modulation of the endogenous ROS levels and by exposing cells to oxidative DNA-damaging agents. We report here that under oxidative stress conditions the majority of base substitution mutations in ssDNA are caused by erroneous, DNA polymerase (Pol) zeta-independent bypass of cytosines, resulting in C to T transitions. For all other DNA bases Pol zeta is essential for ROS-induced mutagenesis. The density of ROS-induced mutations in ssDNA is lower, compared to that caused by UV and MMS, which suggests that ssDNA could be actively protected from oxidative damage. These findings have important implications for understanding mechanisms of oxidative mutagenesis, and could be applied to development of anticancer therapies and cancer prevention.


Asunto(s)
Citosina/química , ADN de Cadena Simple/química , Mutagénesis , Estrés Oxidativo , Adenina/química , ADN/biosíntesis , ADN de Cadena Simple/efectos de los fármacos , ADN Polimerasa Dirigida por ADN/metabolismo , ADN Polimerasa Dirigida por ADN/fisiología , Guanina/química , Peróxido de Hidrógeno/toxicidad , Paraquat/toxicidad , Especies Reactivas de Oxígeno/metabolismo , Saccharomycetales/genética
16.
DNA Repair (Amst) ; 11(9): 753-65, 2012 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-22818187

RESUMEN

Apurinic/apyrimidinic (AP) endonucleases play a major role in the repair of AP sites, oxidative damage and alkylation damage in DNA. We employed Saccharomyces cerevisiae in an unbiased forward genetic screen to identify amino acid substitutions in the major yeast AP endonuclease, Apn1, that impair cellular DNA repair capacity by conferring sensitivity to the DNA alkylating agent methyl methanesulfonate. We report here the identification and characterization of the Apn1 V156E amino acid substitution mutant through biochemical and functional analysis. We found that steady state levels of Apn1 V156E were substantially decreased compared to wild type protein, and that this decrease was due to more rapid degradation of mutant protein compared to wild type. Based on homology to E. coli endonuclease IV and computational modeling, we predicted that V156E impairs catalytic ability. However, overexpression of mutant protein restored DNA repair activity in vitro and in vivo. Thus, the V156E substitution decreases DNA repair capacity by an unanticipated mechanism via increased degradation of mutant protein, leading to substantially reduced cellular levels. Our study provides evidence that the V156 residue plays a critical role in Apn1 structural integrity, but is not involved in catalytic activity. These results have important implications for elucidating structure-function relationships for the endonuclease IV family of proteins, and for employing simple eukaryotic model systems to understand how structural defects in the major human AP endonuclease APE1 may contribute to disease etiology.


Asunto(s)
Enzimas Reparadoras del ADN/metabolismo , Reparación del ADN/genética , Endodesoxirribonucleasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Dominio Catalítico/genética , Enzimas Reparadoras del ADN/genética , Endodesoxirribonucleasas/genética , Humanos , Metilmetanosulfonato/farmacología , Datos de Secuencia Molecular , Mutagénesis/efectos de los fármacos , Mutagénesis/genética , Estabilidad Proteica , Proteolisis , Saccharomyces cerevisiae/enzimología , Proteínas de Saccharomyces cerevisiae/genética
17.
Mech Ageing Dev ; 133(4): 147-56, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22433435

RESUMEN

Activation of signaling pathways in response to genotoxic stress is crucial for cells to properly repair DNA damage. In response to DNA damage, intracellular levels of reactive oxygen species increase. One important function of such a response could be to initiate signal transduction processes. We have employed the model eukaryote Saccharomyces cerevisiae to delineate DNA damage sensing mechanisms. We report a novel, unanticipated role for the transcription factor Yap1 as a DNA damage responder, providing direct evidence that reactive oxygen species are an important component of the DNA damage signaling process. Our findings reveal an epistatic link between Yap1 and the DNA base excision repair pathway. Corruption of the Yap1-mediated DNA damage response influences cell survival and genomic stability in response to exposure to genotoxic agents.


Asunto(s)
Daño del ADN , Reparación del ADN , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Antineoplásicos Alquilantes/toxicidad , Aberraciones Cromosómicas , Relación Dosis-Respuesta a Droga , Relación Dosis-Respuesta en la Radiación , Epistasis Genética , Inestabilidad Genómica , Peróxido de Hidrógeno/toxicidad , Metilmetanosulfonato/toxicidad , Viabilidad Microbiana , Mutágenos/toxicidad , Mutación , Oxidantes/toxicidad , Estrés Oxidativo , Transporte de Proteínas , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/efectos de la radiación , Proteínas de Saccharomyces cerevisiae/genética , Transducción de Señal , Superóxidos/metabolismo , Factores de Tiempo , Factores de Transcripción/genética , Rayos Ultravioleta
18.
Anal Chem ; 84(1): 356-64, 2012 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-22098274

RESUMEN

Bifunctional DNA oligonucleotides serve as templates for chromophoric silver clusters and as recognition sites for target DNA strands, and communication between these two components is the basis of an oligonucleotide sensor. Few-atom silver clusters exhibit distinct electronic spectra spanning the visible and near-infrared region, and they are selectively synthesized by varying the base sequence of the DNA template. In these studies, a 16-base cluster template is adjoined with a 12-base sequence complementary to the target analyte, and hybridization induces structural changes in the composite sensor that direct the conversion between two spectrally and stoichiometrically distinct clusters. Without its complement, the sensor strand selectively harbors ~7 Ag atoms that absorb at 400 nm and fold the DNA host. Upon association of the target with its recognition site, the sensor strand opens to expose the cluster template that has the binding site for ~11 Ag atoms, and absorption at 720 nm with relatively strong emission develops in lieu of the violet absorption. Variations in the length and composition of the recognition site and the cluster template indicate that these types of dual-component sensors provide a general platform for near-infrared-based detection of oligonucleotides in challenging biological environments.


Asunto(s)
ADN/química , Nanotecnología , Óptica y Fotónica , Plata/química
19.
Anal Chem ; 83(15): 5957-64, 2011 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-21702495

RESUMEN

A bifunctional oligonucleotide integrates in situ synthesis of a fluorogenic silver cluster with recognition of a target DNA sequence. With the template C(3)AC(3)AC(3)GC(3)A, a complex forms with 10 silver atoms that possesses electronic transitions in the near-infrared and that is detected at nanomolar concentrations using diode laser excitation. Pendant to this cluster encoding region, the recognition component binds a target DNA strand through hybridization, and decoupling of these two regions of the composite sensor renders a modular sensor for specific oligonucleotides. A target is detected using a quencher strand that bridges the cluster template and recognition components and disturbs cluster binding, as indicated by static quenching. Competitive displacement of the quencher by the target strand restores the favored cluster environment, and our key finding is that this exchange enhances emission through a proportional increase in the number of emissive clusters. DNA detection is also accomplished in serum-containing buffers by taking advantage of the high brightness of this fluorophore and the inherently low endogenous background in the near-infrared spectral region. Cluster stability in this biological environment is enhanced by supplementing the solutions with Ag(+).


Asunto(s)
ADN/análisis , Hibridación de Ácido Nucleico/métodos , Oligonucleótidos/química , Plata/química , Espectroscopía Infrarroja Corta/métodos , Secuencia de Bases , Colorantes Fluorescentes/química
20.
Methods Enzymol ; 492: 213-31, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21333793

RESUMEN

Repetition of trinucleotide sequences is the molecular basis of ~30 hereditary neurological and neurodegenerative diseases, and alternate structures adopted by these sequences are implicated in the etiology of such diseases. Elucidating these structures is important for advancing mechanistic understanding and ultimately treatment. Studies of (CAG) repeats are motivated by their involvement in a number of these diseases, and the structures favored by (CAG)8 are discussed in this contribution. Utilizing the strong effect of base stacking on fluorescence quantum yield, 2-aminopurine is used in place of adenine to determine the secondary structures adopted by such repeated sequences. Alone, (CAG)8 folds into a hairpin comprised of a duplex stem and a single-stranded loop. Energetic studies indicate that the hairpin is anchored by the interactions in the stem and has a strained loop environment. As a model for intermediates that form during repeat expansion, (CAG)8 was also incorporated into a duplex to form a three-way junction. In contrast to the isolated (CAG)8, this integrated repeat adopts an open, unfolded loop. Enthalpy and entropy changes associated with denaturation indicate that the stability of the three-way junction is dominated by interactions in the duplex arms and that the repeated sequence tracks global unfolding. Because 2-aminopurine provides both structural and energetic information via fluorescence and also is an innocuous substitution for adenine, significant progress in elucidating the secondary structures of (CAG) repeats will be achieved.


Asunto(s)
2-Aminopurina/metabolismo , ADN/química , Repeticiones de Trinucleótidos , Adenina/análogos & derivados , Secuencia de Bases , Síndrome del Cromosoma X Frágil/genética , Humanos , Conformación de Ácido Nucleico , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...