Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 17(12): e0278912, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36520830

RESUMEN

Over the past 10 years, studies using high-throughput 16S rRNA gene sequencing have shown that mosquitoes harbor diverse bacterial communities in their digestive system. However, no previous research has examined the total bacteria community inside versus outside of mosquitoes and whether bacteria found on the outside could represent a potential health threat through mechanical transfer. We examined the bacterial community of the external surface and internal body of female Anopheles coluzzii adults collected from homes in Côte d'Ivoire, Africa, by Illumina sequencing of the V3 to V4 region of 16S rRNA gene. Anopheles coluzzii is in the Anopheles gambiae sensu lato (s.l.) species complex and important in the transmission of malaria. The total 16S rRNA reads were assigned to 34 phyla, 73 orders, 325 families, and 700 genera. At the genus level, the most abundant genera inside and outside combined were Bacillus, Staphylococcus, Enterobacter, Corynebacterium, Kocuria, Providencia, and Sphingomonas. Mosquitoes had a greater diversity of bacterial taxa internally compared to the outside. The internal bacterial communities were similar between homes, while the external body samples were significantly different between homes. The bacteria on the external body were associated with plants, human and animal skin, and human and animal infections. Internally, Rickettsia bellii and Rickettsia typhi were found, potentially of importance, since this genus is associated with human diseases. Based on these findings, further research is warranted to assess the potential mechanical transmission of bacteria by mosquitoes moving into homes and the importance of the internal mosquito microbiota in human health.


Asunto(s)
Anopheles , Malaria , Microbiota , Animales , Humanos , Anopheles/genética , ARN Ribosómico 16S/genética , Côte d'Ivoire , Bacterias/genética , Microbiota/genética , Mosquitos Vectores
2.
Microorganisms ; 9(4)2021 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-33923893

RESUMEN

The bollworm, Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae), is an important agricultural pest in U.S. cotton and is managed using transgenic hybrids that produce insecticidal proteins from the bacterium, Bacillus thuringiensis (Bt). The reduced efficacy against H. zea caterpillars of Bt plants expressing Cry toxins is increasing in the field. In a first step towards understanding Bt cotton-bollworm-microbiota interactions, we investigated the internal bacterial microbiota of second-third stadium H. zea collected in the field from non-Bt versus Bt (WideStrike) cotton in close proximity (in North Carolina, USA). The bacterial populations were analyzed using culture-dependent and -independent molecular approaches. We found that WideStrike samples had a higher bacterial density and diversity per larva than insects collected from non-Bt cotton over two field seasons: 8.42 ± 0.23 and 5.36 ± 0.75 (log10 colony forming units per insect) for WideStrike compared to 6.82 ± 0.20 and 4.30 ± 0.56 for non-Bt cotton for seasons 1 and 2, respectively. Fifteen phyla, 103 families, and 229 genera were identified after performing Illumina sequencing of the 16S rRNA. At the family level, Enterobacteriaceae and Enterococcaceae were the most abundant taxa. The Enterococcaceae family was comprised mostly of Enterococcus species (E. casseliflavus and another Enterococcus sp.). Members of the Enterococcus genus can acidify their environment and can potentially reduce the alkaline activation of some Bt toxins. These findings argue for more research to better understand the role of cotton-bollworm-bacteria interactions and the impact on Bt toxin caterpillar susceptibility.

3.
J Med Entomol ; 58(1): 458-464, 2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-32808667

RESUMEN

Malaria, dengue, yellow fever, and the Zika and West Nile Viruses are major vector-borne diseases of humans transmitted by mosquitoes. According to the World Health Organization, over 80% of the world's population is at risk of contacting these diseases. Insecticides are critical for mosquito control and disease prevention, and insect insecticide resistance is on the increase; new alternatives with potentially different modes of action from current chemistry are needed. During laboratory screening of industrial minerals for insecticide activity against Anopheles gambiae (Giles) (Diptera: Culicidae) we discovered a novel mechanical insecticide derived from volcanic rock (MIVR) with potential use as a residual spray. In modified WHO cone tests, the time to 50% mortality was 5 h under high-humidity conditions. MIVR treated surfaces demonstrated no mosquito repellency. In field studies where the mechanical insecticide was applied to wood using standard spray equipment and then placed under stilt homes in New Orleans, LA, the residual activity was >80% after 9 wk against Aedes aegypti (L.) (Diptera: Culicidae), Aedes albopictus (Skuse) (Diptera: Culicidae) and Culex quinquefasciatus (Say) (Diptera: Culicidae) (with similar efficacy to a positive chemical insecticide control). In scanning electron microcopy studies, the MIVR was transferred as particles mostly to the legs of the mosquito. This wettable powder made from volcanic rock is a mechanical insecticide representing a potential new mode of action different from current chemistry for mosquito control and is in commercial development under the trade name Imergard™WP as an indoor and outdoor residual spray.


Asunto(s)
Culicidae , Insecticidas , Minerales , Control de Mosquitos , Mosquitos Vectores , Animales , Femenino
4.
Insects ; 11(5)2020 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-32456154

RESUMEN

Malaria is the deadliest mosquito-borne disease and kills predominantly people in sub-Saharan Africa (SSA). The now widespread mosquito resistance to pyrethroids, with rapidly growing resistance to other insecticide classes recommended by the World Health Organization (WHO), may overturn the successes gained in mosquito control in recent years. It is of utmost importance to search for new, inexpensive, and safe alternatives, with new modes of action, that might improve the efficacy of current insecticides. The efficacy of a novel mechanical insecticidal mineral derived from volcanic rock, ImergardTMWP, was investigated to determine its efficacy as a stand-alone residual wall spray and as a mixture with deltamethrin (K-Othrine® Polyzone) in experimental huts in Cove, Benin. The evaluation was conducted with susceptible (Kisumu) and wild-type Anopheles gambiae (s.l.). Deltamethrin applied alone demonstrated 40-45% mortality (at 72 h post-exposure) during the first four months, which declined to 25% at six months for wild An. gambiae from Cove. ImergardTMWP alone and mixed with deltamethrin, under the same assay conditions, produced 79-82% and 73-81% mortality, respectively, during the same six-month period. ImergardTMWP met the 80% WHO bio-efficacy threshold for residual activity for the first five months with 78% residual activity at six months. ImergardTMWP can be used as a mixture with chemical insecticides or as a stand-alone pesticide for mosquito control in Africa.

5.
Insects ; 12(1)2020 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-33383724

RESUMEN

Spodoptera frugiperda was first reported in Africa in 2016 and has since become a serious threat to maize/cereal production on the continent. Current control of the pest relies on synthetic chemical insecticides, which can negatively impact the environment and promote the development of resistance when used indiscriminately. Therefore, great attention is being paid to the development of safer alternatives. In this study, several biorational products and a semi-synthetic insecticide were evaluated. Two household soaps ("Palmida" and "Koto") and a detergent ("So Klin") were first tested for their efficacy against the larvae under laboratory conditions. Then, the efficacy of the most effective soap was evaluated in field conditions, along with PlantNeem (neem oil), Dezone (diatomaceous earth), and Emacot 19 EC (emamectin benzoate), in two districts, N'Dali and Adjohoun, located, respectively, in northern and southern Benin. The soaps and the detergent were highly toxic t second-instar larvae with 24 h lethal concentrations (LC50) of 0.46%, 0.44%, and 0.37% for So Klin, Koto, and Palmida, respectively. In field conditions, the biorational insecticides produced similar or better control than Emacot 19 EC. However, the highest maize grain yields of 7387 and 5308 kg/ha were recorded, respectively, with Dezone (N'Dali) and Emacot 19 EC (Adjohoun). A cost-benefit analysis showed that, compared to an untreated control, profits increased by up to 90% with the biorational insecticides and 166% with Emacot 19 EC. Therefore, the use of Palmida soap at 0.5% concentration, neem oil at 4.5 L/ha, and Dezone at 7.5 kg/ha could provide an effective, environmentally friendly, and sustainable management of S. frugiperda in maize.

6.
J Med Entomol ; 56(6): 1704-1714, 2019 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-31237324

RESUMEN

Filth flies live in close proximity to humans and livestock and transmit pathogens. Current control relies on chemical insecticides, and flies can develop resistance to these insecticides. The public is also interested in natural and safer insecticides. Therefore, alternative pesticides compatible with the synanthropic nature of flies are needed. Four plant aliphatic methyl ketones were evaluated for control of adult house flies, Musca domestica L., blow flies, Cochliomyia macellaria (F.), and gray flesh flies, Sarcophaga bullata (Parker). In sealed petri dish assays, 2-heptanone, 2-octanone, 2-nonanone, and 2-undecanone exhibited fumigant activity against house flies with 24-h LC50s of 6.9, 7.5, 8.0, and 9.2 µg/cm3, respectively. Further research focused on undecanone (a U.S. EPA-registered biopesticide). When tested in larger enclosures at 1.7, 2.3, and 2.8 µg/cm3, undecanone provided 60.4, 82.2, and 94.4% house fly mortality; 56.9, 75.6, and 92.5% flesh fly mortality; and 62.1, 84.5, and 97.9% blow fly mortality, respectively, after a 2-h exposure. In a two-choice behavioral assay with 194.6 µg/cm2 of the test compound on the treatment versus an untreated surface of the same area, the overall mean repellencies for blow flies were 84.7% for undecanone versus 87.6% for N,N-diethyl-meta-toluamide (DEET). For house flies, mean repellencies were 80.7% for undecanone and 84.9% for DEET. The house fly topical LD50 for undecanone was 58.1 µg per fly. Undecanone was far less expensive for filth fly control than the gold standard for insect fumigation, methyl bromide.


Asunto(s)
Dípteros , Control de Insectos , Insecticidas , Cetonas , Fitoquímicos , Animales , Femenino , Moscas Domésticas , Masculino , Sarcofágidos
7.
Sci Rep ; 9(1): 20365, 2019 12 30.
Artículo en Inglés | MEDLINE | ID: mdl-31889104

RESUMEN

The black blow fly, Phormia regina (Meigen) (Diptera: Calliphoridae) is one of the most abundant carrion flies in North America. Calliphorids are important in agriculture and animal production, veterinary sciences, forensics and medical entomology. While the role of flies in the epidemiology of human and animal diseases is an active area of research, little is known about the microorganisms associated with these insects. We examined the diversity of wild-caught black blow fly endogenous (internal body) and exogenous (external body) microbial communities using 16S rRNA gene sequencing. Overall, 27 phyla, 171 families and 533 genera were detected, and diversity was significantly higher (P < 0.05) on external body surfaces. At the genus level, Dysgonomonas, Ignatzschineria, Acinetobacter, Vagococcus, Myroides, and Wohlfahrtiimonas were predominant. Cloning and sequencing of nearly full-length fragments of the 16S rRNA gene showed that some of the species identified are known to be pathogenic to humans, animals, and plants. Myroides odoratimimus and Acinetobacter radioresistens are well-known, multi-drug resistant bacteria. These results provide a snapshot of the microbial communities harbored by adult black blow flies and call for more comprehensive studies to better characterize the role these flies may play in the transmission of pathogenic microorganisms.


Asunto(s)
Dípteros/microbiología , Granjas , Microbiota , Animales , Biodiversidad , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Metaboloma , Metabolómica/métodos , Filogenia , ARN Ribosómico 16S
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...