Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Leukemia ; 38(2): 302-317, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38057495

RESUMEN

Chronic lymphocytic leukemia (CLL) is still an incurable disease, with many patients developing resistance to conventional and targeted therapies. To better understand the physiology of CLL and facilitate the development of innovative treatment options, we examined specific metabolic features in the tumor CLL B-lymphocytes. We observed metabolic reprogramming, characterized by a high level of mitochondrial oxidative phosphorylation activity, a low glycolytic rate, and the presence of C2- to C6-carnitine end-products revealing an unexpected, essential role for peroxisomal fatty acid beta-oxidation (pFAO). Accordingly, downmodulation of ACOX1 (a rate-limiting pFAO enzyme overexpressed in CLL cells) was enough to shift the CLL cells' metabolism from lipids to a carbon- and amino-acid-based phenotype. Complete blockade of ACOX1 resulted in lipid droplet accumulation and caspase-dependent death in CLL cells, including those from individuals with poor cytogenetic and clinical prognostic factors. In a therapeutic translational approach, ACOX1 inhibition spared non-tumor blood cells from CLL patients but led to the death of circulating, BCR-stimulated CLL B-lymphocytes and CLL B-cells receiving pro-survival stromal signals. Furthermore, a combination of ACOX1 and BTK inhibitors had a synergistic killing effect. Overall, our results highlight a less-studied but essential metabolic pathway in CLL and pave the way towards the development of new, metabolism-based treatment options.


Asunto(s)
Leucemia Linfocítica Crónica de Células B , Humanos , Linfocitos B/metabolismo , Ácidos Grasos/metabolismo , Ácidos Grasos/uso terapéutico , Leucemia Linfocítica Crónica de Células B/patología , Reprogramación Metabólica , Mitocondrias/metabolismo
2.
Leukemia ; 37(11): 2221-2230, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37752286

RESUMEN

Chronic lymphocytic leukemia (CLL) is a heterogeneous disease, the prognosis of which varies according to the cytogenetic group. We characterized a rare chromosomal abnormality (del(8p), deletion of the short arm of chromosome 8) in the context of CLL. By comparing the largest cohort of del(8p) CLL to date (n = 57) with a non-del(8p) cohort (n = 155), del(8p) was significantly associated with a poor prognosis, a shorter time to first treatment, worse overall survival (OS), and a higher risk of Richter transformation. For patients treated with fludarabine-based regimens, the next-treatment-free survival and the OS were shorter in del(8p) cases (including those with mutated IGHV). One copy of the TNFRSF10B gene (coding a pro-apoptotic receptor activated by TRAIL) was lost in 91% of del(8p) CLL. TNFRSF10B was haploinsufficient in del(8p) CLL, and was involved in the modulation of fludarabine-induced cell death - as confirmed by our experiments in primary cells and in CRISPR-edited TNFRSF10B knock-out CLL cell lines. Lastly, del(8p) abrogated the synergy between fludarabine and TRAIL-induced apoptosis. Our results highlight del(8p)'s value as a prognostic marker and suggest that fit CLL patients (i.e. with mutated IGHV and no TP53 disruption) should be screened for del(8p) before the initiation of fludarabine-based treatment.


Asunto(s)
Leucemia Linfocítica Crónica de Células B , Humanos , Aberraciones Cromosómicas , Leucemia Linfocítica Crónica de Células B/tratamiento farmacológico , Leucemia Linfocítica Crónica de Células B/genética , Mutación , Pronóstico , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/genética , Vidarabina/farmacología , Vidarabina/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...