Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 23(9)2023 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-37177702

RESUMEN

Speech processing algorithms, especially sound source localization (SSL), speech enhancement, and speaker tracking are considered to be the main fields in this application. Most speech processing algorithms require knowing the number of speakers for real implementation. In this article, a novel method for estimating the number of speakers is proposed based on the hive shaped nested microphone array (HNMA) by wavelet packet transform (WPT) and 2D sub-band adaptive steered response power (SB-2DASRP) with phase transform (PHAT) and maximum likelihood (ML) filters, and, finally, the agglomerative classification and elbow criteria for obtaining the number of speakers in near-field scenarios. The proposed HNMA is presented for aliasing and imaging elimination and preparing the proper signals for the speaker counting method. In the following, the Blackman-Tukey spectral estimation method is selected for detecting the proper frequency components of the recorded signal. The WPT is considered for smart sub-band processing by focusing on the frequency bins of the speech signal. In addition, the SRP method is implemented in 2D format and adaptively by ML and PHAT filters on the sub-band signals. The SB-2DASRP peak positions are extracted on various time frames based on the standard deviation (SD) criteria, and the final number of speakers is estimated by unsupervised agglomerative clustering and elbow criteria. The proposed HNMA-SB-2DASRP method is compared with the frequency-domain magnitude squared coherence (FD-MSC), i-vector probabilistic linear discriminant analysis (i-vector PLDA), ambisonics features of the correlational recurrent neural network (AF-CRNN), and speaker counting by density-based classification and clustering decision (SC-DCCD) algorithms on noisy and reverberant environments, which represents the superiority of the proposed method for real implementation.

2.
Sensors (Basel) ; 24(1)2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38202893

RESUMEN

This paper proposes a new system based on the Industrial Internet of Things (IIoT) for the monitoring of Mobile Health (m-Health) of workers in the underground mining industry. The proposed architecture uses a hybrid model in data transmission. Visible Light Communication (VLC) is used for downlink because of its narrow coverage, which aids in worker positioning. Radio frequency (RF) communication technology is used to send data for primary vital signs in the uplink, which is more efficient in transmission and is a viable solution according to the problem raised. The results obtained in terms of coverage and transmission for the downlink and uplink links show the feasibility of implementing the proposed system.

3.
Entropy (Basel) ; 24(11)2022 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-36359600

RESUMEN

Visible light communication (VLC) is considered an enabling technology for future 6G wireless systems. Among the many applications in which VLC systems are used, one of them is harsh environments such as Underground Mining (UM) tunnels. However, these environments are subject to degrading environmental and intrinsic challenges for optical links. Therefore, current research should focus on solutions to mitigate these problems and improve the performance of Underground Mining Visible Light Communication (UM-VLC) systems. In this context, this article presents a novel solution that involves an improvement to the Angle Diversity Receivers (ADRs) based on the adaptive orientation of the Photo-Diodes (PDs) in terms of the Received Signal Strength Ratio (RSSR) scheme. Specifically, this methodology is implemented in a hemidodecahedral ADR and evaluated in a simulated UM-VLC scenario. The performance of the proposed design is evaluated using metrics such as received power, user data rate, and bit error rate (BER). Furthermore, our approach is compared with state-of-the-art ADRs implemented with fixed PDs and with the Time of Arrival (ToA) reception method. An improvement of at least 60% in terms of the analyzed metrics compared to state-of-the-art solutions is obtained. Therefore, the numerical results demonstrate that the hemidodecahedral ADR, with adaptive orientation PDs, enhances the received optical signal. Furthermore, the proposed scheme improves the performance of the UM-VLC system due to its optimum adaptive angular positioning, which is completed according to the strongest optical received signal power. By improving the performance of the UM-VLC system, this novel method contributes to further consideration of VLC systems as potential and enabling technologies for future 6G deployments.

4.
Sensors (Basel) ; 22(7)2022 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-35408098

RESUMEN

Underground Mining (UM) is a hostile industry that generally requires a wireless communication system as a cross-cutting axis for its optimal operation. Therefore, in the last five years, it has been shown that, in addition to radio-frequency-based communication links, wireless optical communications, such as Visible Light Communication (VLC), can be applied to UM environments. The application of VLC systems in underground mines, known as UM-VLC, must take into account the unique physical features of underground mines. Among the physical phenomena found in underground mines, the most important ones are the positioning of optical transmitters and receivers, irregular walls, shadowing, and a typical phenomenon found in tunnels known as scattering, which is caused by the atmosphere and dust particles. Consequently, it is necessary to use proper dust particle distribution models consistent with these scenarios to describe the scattering phenomenon in a coherent way in order to design realistic UM-VLC systems with better performance. Therefore, in this article, we present an in-depth study of the interaction of optical links with dust particles suspended in the UM environment and the atmosphere. In addition, we analytically derived a hemispherical 3D dust particle distribution model, along with its main statistical parameters. This analysis allows to develop a more realistic scattering channel component and presents an enhanced UM-VLC channel model. The performance of the proposed UM-VLC system is evaluated using computational numerical simulations following the IEEE 802.1.5.7 standard in terms of Channel Impulse Response (CIR), received power, Signal-to-Noise-Ratio (SNR), Root Mean Square (RMS) delay spread, and Bit Error Rate (BER). The results demonstrate that the hemispherical dust particle distribution model is more accurate and realistic in terms of the metrics evaluated compared to other models found in the literature. Furthermore, the performance of the UM-VLC system is negatively affected when the number of dust particles suspended in the environment increases.

5.
Sensors (Basel) ; 22(3)2022 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-35161757

RESUMEN

Multiple simultaneous sound source localization (SSL) is one of the most important applications in the speech signal processing. The one-step algorithms with the advantage of low computational complexity (and low accuracy), and the two-step methods with high accuracy (and high computational complexity) are proposed for multiple SSL. In this article, a combination of one-step-based method based on the generalized eigenvalue decomposition (GEVD), and a two-step-based method based on the adaptive generalized cross-correlation (GCC) by using the phase transform/maximum likelihood (PHAT/ML) filters along with a novel T-shaped circular distributed microphone array (TCDMA) is proposed for 3D multiple simultaneous SSL. In addition, the low computational complexity advantage of the GCC algorithm is considered in combination with the high accuracy of the GEVD method by using the distributed microphone array to eliminate spatial aliasing and thus obtain more appropriate information. The proposed T-shaped circular distributed microphone array-based adaptive GEVD and GCC-PHAT/ML algorithms (TCDMA-AGGPM) is compared with hierarchical grid refinement (HiGRID), temporal extension of multiple response model of sparse Bayesian learning with spherical harmonic (SH) extension (SH-TMSBL), sound field morphological component analysis (SF-MCA), and time-frequency mixture weight Bayesian nonparametric acoustical holography beamforming (TF-MW-BNP-AHB) methods based on the mean absolute estimation error (MAEE) criteria in noisy and reverberant environments on simulated and real data. The superiority of the proposed method is presented by showing the high accuracy and low computational complexity for 3D multiple simultaneous SSL.


Asunto(s)
Localización de Sonidos , Algoritmos , Teorema de Bayes , Ruido , Sonido
6.
Sensors (Basel) ; 20(2)2020 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-31936434

RESUMEN

This paper proposes two solutions based on angle diversity receivers (ADRs) to mitigate inter-cell interference (ICI) in underground mining visible light communication (VLC) systems, one of them is a novel approach. A realistic VLC system based on two underground mining scenarios, termed as mining roadway and mine working face, is developed and modeled. A channel model based on the direct component in line-of-sight (LoS) and reflections of non-line-of-sight (NLoS) links is considered, as well as thermal and shot noises. The design and mathematical models of a pyramid distribution and a new hemi-dodecahedral distribution are addressed in detail. The performances of these approaches, accompanied by signal combining schemes, are evaluated with the baseline of a single photo-diode in reception. Results show that the minimum lighting standards established in both scenarios are met. As expected, the root-mean-square delay spread decreases as the distance between the transmitters and receivers increases. Furthermore, the hemi-dodecahedron ADR in conjunction with the maximum ratio combining (MRC) scheme, presents the best performance in the evaluated VLC system, with a maximum user data rate of 250 Mbps in mining roadway and 120 Mbps in mine working face, received energy per bit/noise power of 32 dB and 23 dB, respectively, when the bit error rate corresponds to 10 - 4 , and finally, values of 120 dB in mining roadway and 118 dB in mine working face for signal-to-interference-plus-noise ratio are observed in a cumulative distribution function.

7.
Magn Reson Imaging ; 63: 250-257, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31449850

RESUMEN

The purpose of this study is to estimate the precision or statistical variability of the velocity measurements computed from MRI phase-contrast. From the analytical probability density function (PDF) of the phase in the signal we obtain the PDF of the velocity by means of an auto-convolution. This PDF allows the estimation of the precision of the velocity, important for the correct interpretation of the many parameters that are based on it. We show that for high Signal-to-Noise Ratio (SNR) voxels, the distribution is well approximated by a Gaussian distribution. On the other hand, this is not true for lower SNR voxels, where the distribution adopts a form in between the Gaussian and the uniform distributions. This was confirmed empirically. Also, knowing the PDF on a coil by coil basis it is possible to combine the data from multiple coils in an optimal way. We showed that the optimal combination reduces the resulting global variability of the velocity, in comparison with the commonly used Weighted Mean or with a SENSE reconstruction with R = 1.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética , Microscopía de Contraste de Fase , Relación Señal-Ruido , Humanos , Funciones de Verosimilitud , Distribución Normal , Fantasmas de Imagen , Probabilidad , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...