Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Drug Dev Res ; 84(8): 1739-1750, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37769152

RESUMEN

Glioblastoma multiforme (GBM) is the most invasive form of primary brain astrocytoma, resulting in poor clinical outcomes. Herpes simplex virus thymidine kinase/ganciclovir (HSV-TK/GCV) gene therapy is considered a promising strategy for GBM treatment. Since Connexin43 (Cx43) expression is reduced in GBM cells, increasing Cx43 levels could enhance the effectiveness of gene therapy. The present study aims to examine the impact of fluoxetine on HSV-TK/GCV gene therapy in human GBM cells using human olfactory ensheathing cells (OECs) as vectors. The effect of fluoxetine on Cx43 levels was assessed using the western blot technique. GBM-derived astrocytes and OECs-TK were Cocultured, and the effect of fluoxetine on the Antitumor effect of OEC-TK/GCV gene therapy was evaluated using MTT assay and flow cytometry. Our results showed that fluoxetine increased Cx43 levels in OECs and GBM cells and augmented the killing effect of OECs-TK on GBM cells. Western blot data revealed that fluoxetine enhanced the Bax/Bcl2 ratio and the levels of cleaved caspase-3 in the coculture of OECs-TK and GBM cells. Moreover, flow cytometry data indicated that fluoxetine increased the percentage of apoptotic cells in the coculture system. This study suggests that fluoxetine, by upregulating Cx43 levels, could strengthen the Antitumor effect of OEC-TK/GCV gene therapy on GBM cells.


Asunto(s)
Ganciclovir , Glioblastoma , Humanos , Ganciclovir/farmacología , Ganciclovir/uso terapéutico , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Conexina 43/genética , Conexina 43/metabolismo , Conexina 43/uso terapéutico , Timidina Quinasa/genética , Timidina Quinasa/metabolismo , Timidina Quinasa/uso terapéutico , Fluoxetina/farmacología , Fluoxetina/uso terapéutico , Regulación hacia Arriba , Terapia Genética , Antivirales/farmacología
2.
J Biochem Mol Toxicol ; 36(9): e23125, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35702883

RESUMEN

Repaglinide (RPG) is an oral insulin secretagogue used in the treatment of diabetes. In this study, a new RPG analog was synthesized. Its antidiabetic and neuroprotective effects on dorsal root ganglions (DRG) in streptozotocin (STZ)-induced diabetic rats were examined compared to RPG. To assess the effects of 2-methoxy-4-(2-((3-methyl-1-(2-(piperidin-1-yl)phenyl)butyl)amino)-2-oxoethoxy)benzoic acid (OXR), the impact of OXR on oxidative stress biomarkers, motor function, and the expression of the glutamate dehydrogenase 1 (GLUD1), SLC2A2/glucose transporter 2 (GLUT2), and glucokinase (GCK) genes in STZ-induced diabetic rats were assessed. DRGs were examined histologically using hemotoxylin and eosin staining. Molecular docking was used to investigate the interactions between OXR and the binding site of RPG, the ATP-sensitive potassium (KATP) channel. Following 5 weeks of treatment, OXR significantly increased the level of total antioxidant power, decreased reactive oxygen species, and lipid peroxidation in the DRGs of diabetic rats. OXR restored STZ-induced pathophysiological damages in DRG tissues. Administration of OXR improved motor function of rats with diabetic neuropathy. Administration of 0.5 mg/kg OXR reduced blood glucose while promoting insulin, mainly through upregulation of messenger RNA expression of GLUD1, GLUT2, and GCK in the pancreas. Molecular docking revealed a favorable binding mode of OXR to the KATP channel. In conclusion, OXR has neuroprotective effects in diabetic rats by lowering oxidative stress, lowering blood glucose, and stimulating insulin secretion. We report that 0.5 mg/kg OXR administration was the most effective concentration of the compound in this study. OXR may be a promising target for further research on neuroprotective antidiabetic molecules.


Asunto(s)
Diabetes Mellitus Experimental , Fármacos Neuroprotectores , Adenosina Trifosfato/metabolismo , Animales , Antioxidantes/metabolismo , Antioxidantes/farmacología , Ácido Benzoico/farmacología , Biomarcadores/metabolismo , Glucemia/metabolismo , Carbamatos , Diabetes Mellitus Experimental/metabolismo , Eosina Amarillenta-(YS)/farmacología , Glucoquinasa/metabolismo , Proteínas Facilitadoras del Transporte de la Glucosa/metabolismo , Proteínas Facilitadoras del Transporte de la Glucosa/farmacología , Glutamato Deshidrogenasa/metabolismo , Glutamato Deshidrogenasa/farmacología , Hematoxilina/farmacología , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Insulina , Canales KATP/metabolismo , Simulación del Acoplamiento Molecular , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Estrés Oxidativo , Piperidinas , Potasio/metabolismo , Potasio/farmacología , ARN Mensajero/metabolismo , Ratas , Especies Reactivas de Oxígeno/metabolismo , Secretagogos/farmacología
3.
Neurol Res ; 44(5): 390-402, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-34706635

RESUMEN

OBJECTIVES: To evaluate the effects of modafinil on neuropathic pain induced by sciatic nerve cuffing in mice, and possible contribution of nitrergic/inflammatory and serotonergic systems. METHODS: Neuropathic pain was induced by applying a polyethylene cuff around the left sciatic nerve. Seven days later, mice received modafinil (50, 100, and 200 mg/kg; intraperitoneal [i.p.]) and morphine (10 mg/kg, i.p.) as control. Mice also received pretreatments of the nonselective nitric oxide (NO) synthase (NOS) inhibitor L-NAME, the selective neuronal NOS inhibitor 7-nitroindazole, the selective inducible NOS inhibitor aminoguanidine, and the selective serotonin reuptake inhibitor citalopram before modafinil (100 mg/kg). von Frey test was used to evaluate mechanical allodynia. Additionally, sciatic nerves were collected for histopathological analysis. Tissue levels of NO metabolites, tumor necrosis factor (TNF)-α, and interleukin (IL)-6 were assessed. RESULTS: Animals whose sciatic nerves were cuffed had a significantly (P<0.001) decreased paw withdrawal threshold (PWT) compared with the sham-operated group. Modafinil (100 mg/kg) and morphine significantly reversed PWT (P<0.001). Pretreatments with L-NAME, 7-nitroindazole, aminoguanidine, and citalopram in different groups markedly reversed analgesic effects of modafinil. Tissue homogenates of Cuffed sciatic nerves showed significantly higher levels of NO metabolites, TNF-α and IL-6 (P<0.001). Modafinil lowered NO metabolites, TNF-α, and IL-6 levels (P<0.001). Histopathology illustrated marked axonal degeneration and shrinkage in the cuffed sciatic nerve, which were improved in the modafinil-treated group. CONCLUSIONS: Modafinil exerts analgesic and neuroprotective effects in cuff-induced neuropathic mice via possible involvement of the nitrergic/inflammatory and serotonergic systems.


Asunto(s)
Neuralgia , Factor de Necrosis Tumoral alfa , Analgésicos/farmacología , Analgésicos/uso terapéutico , Animales , Antiinflamatorios/farmacología , Citalopram/uso terapéutico , Modelos Animales de Enfermedad , Hiperalgesia/tratamiento farmacológico , Interleucina-6 , Ratones , Modafinilo/farmacología , Modafinilo/uso terapéutico , Morfina/uso terapéutico , NG-Nitroarginina Metil Éster , Neuralgia/tratamiento farmacológico , Neuralgia/metabolismo , Óxido Nítrico/metabolismo , Nervio Ciático/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
4.
Eur J Pharmacol ; 908: 174309, 2021 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-34252442

RESUMEN

Kynurenine Pathway (KP) is the dominant metabolic route of tryptophan which is catalyzed by indoleamine-2,3-dioxygenase (IDO). This pathway is upregulated in liver disease where the level of KP metabolites correlates with the severity of disease. Cirrhosis is associated with cardiac dysfunction, which manifests itself during severe physiological challenges such as liver transplantation. Cardiac dysfunction in cirrhosis is linked to systemic inflammation and impaired cardiac beta-adrenergic signaling pathways. The KP pathway is involved in modulation of cardiac signaling and is upregulated by systemic inflammation. Therefore, this study aimed to evaluate the effect of IDO inhibition on development of cardiac dysfunction in an experimental model of cirrhosis. Cirrhosis was induced by bile duct ligation (BDL). Experimental groups were given either 1-methyl tryptophan (1-MT, 1, 3, 9 mg/kg), or saline. 28 days after BDL, cardiac chronotropic response to epinephrine was assessed ex vivo. HPLC was employed to measure hepatic and cardiac levels of tryptophan, kynurenine and kynurenic acid. Cirrhosis in rats was associated with impaired cardiac chronotropic responsiveness to adrenergic stimulation. 1-MT dose-dependently improved cirrhosis-induced chronotropic dysfunction as well as elevated serum levels of CRP and IL-6 in BDL rats. Hepatic and cardiac kynurenine/tryptophan ratio were elevated in cirrhotic rats and were reduced following 1-MT administration. Chronic administration of 1-MT could also reduce hepatic inflammation, fibrosis and ductular proliferation. 1-MT attenuates cardiac dysfunction in rats with biliary cirrhosis. This protective effect is not limited to the cardiac function as liver histopathologic changes were also improved following chronic 1-MT administration.


Asunto(s)
Cirrosis Hepática Biliar , Triptófano/análogos & derivados , Animales , Ratas
5.
Curr Neuropharmacol ; 19(2): 114-126, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32348225

RESUMEN

Reactive nitrogen species (RNS) and reactive oxygen species (ROS), collectively known as reactive oxygen and nitrogen species (RONS), are the products of normal cellular metabolism and interact with several vital biomolecules including nucleic acid, proteins, and membrane lipids and alter their function in an irreversible manner which can lead to cell death. There is an imperative role for oxidative stress in the pathogenesis of cognitive impairments and the development and progression of neural injury. Elevated production of higher amounts of nitric oxide (NO) takes place in numerous pathological conditions, such as neurodegenerative diseases, inflammation, and ischemia, which occur concurrently with elevated nitrosative/oxidative stress. The enzyme nitric oxide synthase (NOS) is responsible for the generation of NO in different cells by conversion of Larginine (Arg) to L-citrulline. Therefore, the NO signaling pathway represents a viable therapeutic target. Naturally occurring polyphenols targeting the NO signaling pathway can be of major importance in the field of neurodegeneration and related complications. Here, we comprehensively review the importance of NO and its production in the human body and afterwards highlight the importance of various natural products along with their mechanisms against various neurodegenerative diseases involving their effect on NO production.


Asunto(s)
Óxido Nítrico , Especies de Nitrógeno Reactivo , Humanos , Estrés Nitrosativo , Estrés Oxidativo , Especies Reactivas de Oxígeno
6.
Eur J Pharmacol ; 863: 172705, 2019 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-31574259

RESUMEN

Gastric adenocarcinoma (GAC), the most common malignancy of the stomach, is the fourth most common and the second cause of cancer-related death worldwide. Although HER family plays a cardinal role in tumorigenesis of GAC, trastuzumab is the only approved anti-HER drug for this malignancy and development of resistance to trastuzumab is inevitable. Additionally, single-targeted HER inhibitors have demonstrated limited activity in GAC. Hence, there is a pressing need to devise more efficacious anti-HER therapeutic strategies. Here, we examined the anti-tumor activity of neratinb, a pan-HER inhibitor, on GAC cells. Anti-proliferative effects of neratinib were determined using a cell proliferation assay and crystal violet staining. Annexin V/PI staining, radiation therapy and anoikis resistance and wound healing assays were carried out to examine the effects of neratinib on apoptosis, radio-sensitivity and cell motility, respectively. Quantitative reverse transcription-PCR (qRT-PCR) analyses were applied to further investigate the anti-tumor activity of neratinib. We found that neratinib sensitized GAC cells to 5FU, carboplatin and oxaliplatin. Moreover, we found that neratinib was synergistic with trametinib (an approved MEK inhibitor) and foretinib (a c-MET inhibitor) and potentiated radio-sensitivity of GAC cells. Furthermore, we found that neratinib diminished GAC cell proliferation along with downregulation of FOXM1 and its targets. Additionally, neratinib induced apoptosis along with upregulation of pro-apoptotic and downregulation of anti-apoptotic genes. Treatment with neratinib attenuated invasive ability of GAC cells as shown by reduced anoikis resistance, downregulation of EMT markers, and reduced width in scratch assay. Our findings indicate that neratinib provides the therapeutic potential in the treatment of GAC.


Asunto(s)
Adenocarcinoma/patología , Antineoplásicos/farmacología , Receptores ErbB/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Quinolinas/farmacología , Neoplasias Gástricas/patología , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Humanos , Invasividad Neoplásica
7.
Cell Oncol (Dordr) ; 42(4): 491-504, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31025257

RESUMEN

PURPOSE: Pancreatic ductal adenocarcinoma (PDAC), the most common malignancy of the pancreas, is the fourth most common cause of cancer-related death in the USA. Local progression, early tumor dissemination and low efficacy of current treatments are the major reasons for its high mortality rate. The ERBB family is over-expressed in PDAC and plays essential roles in its tumorigenesis; however, single-targeted ERBB inhibitors have shown limited activity in this disease. Here, we examined the anti-tumor activity of dacomitinib, a pan-ERBB receptor inhibitor, on PDAC cells. METHODS: Anti-proliferative effects of dacomitinib were determined using a cell proliferation assay and crystal violet staining. Annexin V/PI staining, radiation therapy and cell migration and invasion assays were carried out to examine the effects of dacomitinib on apoptosis, radio-sensitivity and cell motility, respectively. Quantitative reverse transcription-PCR (qRT-PCR) and Western blot analyses were applied to elucidate the molecular mechanisms underlying the anti-tumor activity of dacomitinib. RESULTS: We found that dacomitinib diminished PDAC cell proliferation via inhibition of FOXM1 and its targets Aurora kinase B and cyclin B1. Moreover, we found that dacomitinib induced apoptosis and potentiated radio-sensitivity via inhibition of the anti-apoptotic proteins survivin and MCL1. Treatment with dacomitinib attenuated cell migration and invasion through inhibition of the epithelial-to-mesenchymal transition (EMT) markers ZEB1, Snail and N-cadherin. In contrast, we found that the anti-tumor activity of single-targeted ERBB agents including cetuximab (anti-EGFR mAb), trastuzumab (anti-HER2 mAb), H3.105.5 (anti-HER3 mAb) and erlotinib (EGFR small molecule inhibitor) were marginal. CONCLUSIONS: Our findings indicate that dacomitinib-mediated blockade of the ERBB receptors yields advantages over single-targeted ERBB inhibition and provide a rationale for further investigation of the therapeutic potential of dacomitinib in the treatment of ERBB-driven PDAC.


Asunto(s)
Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/patología , Receptores ErbB/antagonistas & inhibidores , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/patología , Quinazolinonas/uso terapéutico , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Receptores ErbB/metabolismo , Humanos , Modelos Biológicos , Invasividad Neoplásica , Quinazolinonas/farmacología , Tolerancia a Radiación , Neoplasias Pancreáticas
8.
Pharmacol Res ; 141: 466-480, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30639373

RESUMEN

The Hedgehog pathway is essential for embryonic development but also for tissue and organ homeostasis in adult organisms. Activation of this pathway leads to the expression of target genes involved in proliferation, angiogenesis and stem cell self-renewal. Moreover, abnormal persistence of Hedgehog signaling is directly involved in a wide range of human cancers. Development of novel strategies targeting the Hedgehog pathway has become a subject of increased interest in anticancer therapy. These data are sustained by pre-clinical studies demonstrating that Hedgehog pathway inhibitors could represent an effective strategy against a heterogeneous panel of malignancies. Limited activity in other tumor types could be explained by the existence of crosstalk between the Hedgehog pathway and other signaling pathways that can compensate for its function. This review describes the Hedgehog pathway in detail, with its physiological roles during embryogenesis and adult tissues, and summarizing the preclinical evidence on its inhibition, the crosstalk between Hedgehog and other cancer-related pathways and finally the potential therapeutic effects of emerging compounds.


Asunto(s)
Antineoplásicos/farmacología , Proteínas Hedgehog/metabolismo , Terapia Molecular Dirigida/métodos , Neoplasias/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos , Animales , Antineoplásicos/uso terapéutico , Humanos , Neoplasias/metabolismo , Neoplasias/patología , Receptores Notch/metabolismo , Receptores del Factor de Crecimiento Derivado de Plaquetas/metabolismo , Proteínas Smad/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
9.
Anticancer Drugs ; 29(10): 1011-1020, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30096128

RESUMEN

Epithelial ovarian cancer (EOC) is the most lethal gynecological malignancy worldwide. Development of chemoresistance and peritoneal dissemination are the major reasons for low survival rate in the patients. The bromodomain and extraterminal domain (BET) proteins are known as epigenetic 'readers,' and their inhibitors are novel epigenetic strategies for cancer treatment. Accumulating body of evidence indicates that epigenetic modifications have critical roles in development of EOC, and overexpression of the BET family is a key step in the induction of important oncogenes. Here, we examined the mechanistic activity of I-BET151, a pan-inhibitor of the BET family, in therapy-resistant EOC cells. Our findings showed that I-BET151 diminished cell growth, clonogenic potential, and induced apoptosis. I-BET151 inhibited cell proliferation through down-modulation of FOXM1 and its targets aurora kinase B and cyclin B1. I-BET151 attenuated migration and invasion of the EOC cells by down-regulation of epithelial-mesenchymal transition markers fibronectin, ZEB2, and N-cadherin. I-BET151 synergistically enhanced cisplatin chemosensitivity by down-regulation of survivin and Bcl-2. Our data provide insights into the mechanistic activity of I-BET151 and suggest that BET inhibition has potential as a therapeutic strategy in therapy-resistant EOC. Further in vivo investigations on the therapeutic potential of I-BET151 in EOC are warranted.


Asunto(s)
Carcinoma Epitelial de Ovario/tratamiento farmacológico , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Neoplasias Ováricas/tratamiento farmacológico , Proteínas/antagonistas & inhibidores , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Apoptosis/efectos de los fármacos , Carcinoma Epitelial de Ovario/patología , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Cisplatino/farmacología , Regulación hacia Abajo/efectos de los fármacos , Resistencia a Antineoplásicos , Sinergismo Farmacológico , Epigénesis Genética/genética , Transición Epitelial-Mesenquimal/efectos de los fármacos , Femenino , Humanos , Neoplasias Ováricas/patología
10.
Pharmacol Res ; 135: 37-48, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29990625

RESUMEN

Neurodegenerative diseases (NDs) such as Parkinson's (PD), Alzheimer's (AD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS) cause significant world-wide morbidity and mortality. To date, there is no drug of cure for these, mostly age-related diseases, although approaches in delaying the pathology and/or giving patients some symptomatic relief have been adopted for the last few decades. Various studies in recent years have shown the beneficial effects of omega-3 poly unsaturated fatty acids (PUFAs) through diverse mechanisms including anti-inflammatory effects. This review now assesses the potential of this class of compounds in NDs therapy through specific action against the mammalian target of rapamycin (mTOR) signaling pathway. The role of mTOR in neurodegenerative diseases and targeted therapies by PUFAs are discussed.


Asunto(s)
Ácidos Grasos Omega-3/farmacología , Enfermedades Neurodegenerativas/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Animales , Ácidos Grasos Omega-3/uso terapéutico , Humanos , Enfermedades Neurodegenerativas/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos
11.
Int J Biochem Cell Biol ; 99: 1-9, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29567488

RESUMEN

Epithelial ovarian cancer (EOC) has exhibited marginal improvement in survival rate, despite advances in surgical debulking and chemotherapy regimens. Although the majority of EOC patients achieve a clinical remission after induction therapy, over 80% relapse and succumb to chemoresistant disease. In this regard, it is of paramount importance to elucidate molecular mechanisms and signaling pathways which promote therapy resistance in EOC in order to devise novel and more effective treatment strategies. In this study, we showed that activation of nuclear factor-κB (NF-κB) is significantly higher in therapy-resistant EOC cells compared to chemosensitive counterparts, which was positively associated with resistance to cisplatin, carboplatin, paclitaxel and erlotinib. Bay 11-7082, a highly selective NF-κB inhibitor, reduced cell proliferation, clonogenicity and anoikis resistance in the therapy-resistant EOC cells and induced apoptotic cell death. Moreover, Bay 11-7082 decreased the expression of pro-survival, inflammatory and metastatic genes and synergistically increased anti-proliferative efficacy of cisplatin, carboplatin, paclitaxel and erlotinib. Altogether, these findings suggest that NF-κB is an attractive therapeutic target in EOC to be exploited in translational oncology and Bay 11-7082 is a potential anti-cancer drug to overcome chemoresistance and inhibit proliferation of the EOC cells.


Asunto(s)
Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Resistencia a Antineoplásicos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , FN-kappa B/antagonistas & inhibidores , Neoplasias Ováricas/patología , Anoicis/efectos de los fármacos , Antineoplásicos/farmacología , Femenino , Humanos , FN-kappa B/metabolismo , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/metabolismo , Células Tumorales Cultivadas
12.
PLoS One ; 13(3): e0193991, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29590163

RESUMEN

BACKGROUND: Aluminum phosphide (AlP) is used as pesticide in some countries for protection of stored grains. Human poisoning with AlP due to suicide attempt or accidental environmental exposure is associated with very high mortality partially due to development of severe metabolic acidosis. Previous studies have shown that hemoglobin has high buffering capacity and erythrocytes can potentially be used for management of metabolic acidosis. The aim of this study was to evaluate the effect of fresh packed red blood cells (RBC) transfusion on survival and cardiovascular function in AlP-poisoned rats. METHODOLOGY/PRINCIPAL FINDINGS: Rats were poisoned with AlP by gavage. Fresh packed RBC was transfused via tail vein after AlP administration. Acid-base balance, vital signs and mortality was assessed and compared in experimental groups. Infusion of fresh packed RBC (1.5 ml) one hour after AlP (4-15 mg/kg) intoxication was associated with a significant decrease in mortality rate. Packed RBC infusion improved blood pH, HCO3-, Na+ and Ca2+ levels. Plasma troponin level was also reduced and ECG changes were reversed following packed RBC infusion in AlP intoxicated rats. CONCLUSIONS: Our results showed that fresh RBC transfusion could ameliorate metabolic acidosis and enhance survival in AlP-poisoned rat. We assume that an increase in pool of RBCs may modulate acid-base balance or potentially chelate AlP-related toxic intermediates via phosphine-hemoglobin interaction.


Asunto(s)
Acidosis/inducido químicamente , Acidosis/terapia , Compuestos de Aluminio/toxicidad , Eritrocitos/fisiología , Fosfinas/toxicidad , Acidosis/metabolismo , Acidosis/mortalidad , Animales , Transfusión de Eritrocitos/métodos , Eritrocitos/metabolismo , Hemoglobinas/metabolismo , Plaguicidas/toxicidad , Fosfinas/metabolismo , Ratas , Ratas Wistar
13.
J Pharm Pharmacol ; 69(12): 1754-1761, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28836276

RESUMEN

OBJECTIVES: Alpha7 nicotinic acetylcholine receptor (α7-nAChR), an emerging pharmacological target for a variety of medical conditions, is expressed in the most mammalian tissues with different effects. So, this study was designed to investigate the expression, localization and effect of α7-nAChR in rat corpus cavernosum (CC). METHODS & KEY FINDINGS: Reverse transcription polymerase chain reaction (RT-PCR) revealed that α7-nAChR was expressed in rat CC and double immunofluorescence studies demonstrated the presence of α7-nAChR in corporal neurons. The rat CC segments were mounted in organ bath chambers and contracted with phenylephrine (0.1 µm -300 µm) to investigate the relaxation effect of electrical field stimulation (EFS,10 Hz) assessed in the presence of guanethidine (adrenergic blocker, 5 µm) and atropine (muscarinic cholinergic blocker, 1 µm) to obtain non-adrenergic non-cholinergic (NANC) response. Cumulative administration of nicotine significantly potentiated the EFS-induced NANC relaxation (-log EC50 = 7.5 ± 0.057). Whereas, the potentiated NANC relaxation of nicotine was significantly inhibited with different concentrations of methyllycaconitine citrate (α7-nAChR antagonist, P < 0.05) in preincubated strips. L-NAME (non-specific nitric oxide synthase inhibitor, 1 µm) completely blocked the neurogenic relaxation induced by EFS plus nicotine. CONCLUSION: To conclude α7-nAChR is expressed in rat CC and modulates the neurogenic relaxation response to nicotine.


Asunto(s)
Nicotina/administración & dosificación , Pene/fisiología , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo , Aconitina/administración & dosificación , Aconitina/análogos & derivados , Aconitina/farmacología , Animales , Atropina/farmacología , Relación Dosis-Respuesta a Droga , Estimulación Eléctrica , Guanetidina/farmacología , Masculino , NG-Nitroarginina Metil Éster/farmacología , Nicotina/farmacología , Fenilefrina/administración & dosificación , Fenilefrina/farmacología , Ratas , Ratas Sprague-Dawley , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
14.
J Clin Exp Hepatol ; 7(2): 107-114, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28663674

RESUMEN

BACKGROUND: Cirrhosis, a common consequence of chronic liver inflammation is associated with various cardiovascular dysfunctions which are called cirrhotic cardiomyopathy (CC). Among the various possible causes of CC, apoptosis is considered to have a pivotal role. OBJECTIVES: To explore the contribution of endogenous opioids in the apoptosis process in a rat model of CC. MATERIAL AND METHODS: Four genes were selected to cover both intrinsic and extrinsic pathways of apoptosis. Cardiac samples from 4 groups of rats were evaluated. Two groups were cirrhotic through bile duct ligation (BDL) receiving either naltrexone (BDL-naltrexone) or saline (BDL-saline), two others were normal rats as sham groups receiving either naltrexone (sham-naltrexone) or saline (sham-saline). Expression level of BCL2, Caspase3, Fas and FasL was explored in all groups using reverse transcriptase real-time PCR. RESULTS: BDL-saline group showed significant over-expression of BCL2, caspase3 and Fas. BCL2 expression was 1.44 (P < 0.001) and caspasse3 was 1.35 (P < 0.001) times higher than sham-saline group, Fas was also overexpressed 1.3 (P < 0.001) times higher than BDL-naltrexone group and 1.91 (P < 0.001) compared to sham-naltrexone group. Caspase3 expression was 1.35 (P < 0.001) folds higher than sham-naltrexone group. The expression pattern of FasL revealed no statistically significant change among study groups. CONCLUSION: Fas molecule enrollment during CC is a novel finding. Fas molecule is activated during cirrhosis through elevated levels of endogenous opioids. This pathway is one of the leading causes of CC. Our findings also demonstrated the protective role of naltrexone as opioids antagonist on cardiomyocytes in a rat model of CC.

15.
Sci Rep ; 7(1): 4204, 2017 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-28646172

RESUMEN

Epithelial ovarian cancer (EOC) is the most lethal gynaecological malignancy worldwide. Development of chemoresistance and peritoneal dissemination of EOC cells are the major reasons for low survival rate. Targeting signal transduction pathways which promote therapy resistance and metastatic dissemination is the key to successful treatment. Members of the ErbB family of receptors are over-expressed in EOC and play key roles in chemoresistance and invasiveness. Despite this, single-targeted ErbB inhibitors have demonstrated limited activity in chemoresistant EOC. In this report, we show that dacomitinib, a pan-ErbB receptor inhibitor, diminished growth, clonogenic potential, anoikis resistance and induced apoptotic cell death in therapy-resistant EOC cells. Dacominitib inhibited PLK1-FOXM1 signalling pathway and its down-stream targets Aurora kinase B and survivin. Moreover, dacomitinib attenuated migration and invasion of the EOC cells and reduced expression of epithelial-to-mesenchymal transition (EMT) markers ZEB1, ZEB2 and CDH2 (which encodes N-cadherin). Conversely, the anti-tumour activity of single-targeted ErbB agents including cetuximab (a ligand-blocking anti-EGFR mAb), transtuzumab (anti-HER2 mAb), H3.105.5 (anti-HER3 mAb) and erlotinib (EGFR small-molecule tyrosine kinase inhibitor) were marginal. Our results provide a rationale for further investigation on the therapeutic potential of dacomitinib in treatment of the chemoresistant EOC.


Asunto(s)
Resistencia a Antineoplásicos/efectos de los fármacos , Receptores ErbB/antagonistas & inhibidores , Neoplasias Ováricas/patología , Inhibidores de Proteínas Quinasas/farmacología , Quinazolinonas/farmacología , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Cisplatino/farmacología , Receptores ErbB/genética , Receptores ErbB/metabolismo , Femenino , Proteína Forkhead Box M1/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Modelos Biológicos , Invasividad Neoplásica , Neoplasias Ováricas/genética , Transducción de Señal/efectos de los fármacos
16.
Sci Rep ; 7: 45954, 2017 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-28383032

RESUMEN

Epithelial ovarian cancer (EOC) is the most fatal gynaecological malignancy. Despite initial therapeutic response, the majority of advanced-stage patients relapse and succumb to chemoresistant disease. Overcoming drug resistance is the key to successful treatment of EOC. Members of vascular endothelial growth factor (VEGF) family are overexpressed in EOC and play key roles in its malignant progression though their contribution in development of the chemoresistant disease remains elusive. Here we show that expression of the VEGF family is higher in therapy-resistant EOC cells compared to sensitive ones. Overexpression of VEGFR2 correlated with resistance to cisplatin and combination with VEGFR2-inhibitor apatinib synergistically increased cisplatin sensitivity. Tivozanib, a pan-inhibitor of VEGF receptors, reduced proliferation of the chemoresistant EOC cells through induction of G2/M cell cycle arrest and apoptotic cell death. Tivozanib decreased invasive potential of these cells, concomitant with reduction of intercellular adhesion molecule-1 (ICAM-1) and diminishing the enzymatic activity of urokinase-type plasminogen activator (uPA) and matrix metalloproteinase-2 (MMP-2). Moreover, tivozanib synergistically enhanced anti-tumour effects of EGFR-directed therapies including erlotinib. These findings suggest that the VEGF pathway has potential as a therapeutic target in therapy-resistant EOC and VEGFR blockade by tivozanib may yield stronger anti-tumour efficacy and circumvent resistance to EGFR-directed therapies.


Asunto(s)
Antineoplásicos/uso terapéutico , Resistencia a Antineoplásicos , Neoplasias Ováricas/tratamiento farmacológico , Compuestos de Fenilurea/uso terapéutico , Quinolinas/uso terapéutico , Factor A de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Anoicis/efectos de los fármacos , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Células Clonales , Resistencia a Antineoplásicos/efectos de los fármacos , Sinergismo Farmacológico , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Femenino , Fase G2/efectos de los fármacos , Humanos , FN-kappa B/metabolismo , Invasividad Neoplásica , Neoplasias Ováricas/patología , Compuestos de Fenilurea/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Quinolinas/farmacología , Transducción de Señal/efectos de los fármacos , Activador de Plasminógeno de Tipo Uroquinasa/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo
17.
Sci Rep ; 7: 44075, 2017 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-28287096

RESUMEN

Glioblastoma (GBM) remains one of the most fatal human malignancies due to its high angiogenic and infiltrative capacities. Even with optimal therapy including surgery, radiotherapy and temozolomide, it is essentially incurable. GBM is among the most neovascularised neoplasms and its malignant progression associates with striking neovascularisation, evidenced by vasoproliferation and endothelial cell hyperplasia. Targeting the pro-angiogenic pathways is therefore a promising anti-glioma strategy. Here we show that tivozanib, a pan-inhibitor of vascular endothelial growth factor (VEGF) receptors, inhibited proliferation of GBM cells through a G2/M cell cycle arrest via inhibition of polo-like kinase 1 (PLK1) signalling pathway and down-modulation of Aurora kinases A and B, cyclin B1 and CDC25C. Moreover, tivozanib decreased adhesive potential of these cells through reduction of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1). Tivozanib diminished GBM cell invasion through impairing the proteolytic cascade of cathepsin B/urokinase-type plasminogen activator (uPA)/matrix metalloproteinase-2 (MMP-2). Combination of tivozanib with EGFR small molecule inhibitor gefitinib synergistically increased sensitivity to gefitinib. Altogether, these findings suggest that VEGFR blockade by tivozanib has potential anti-glioma effects in vitro. Further in vivo studies are warranted to explore the anti-tumour activity of tivozanib in combinatorial approaches in GBM.


Asunto(s)
Antineoplásicos/uso terapéutico , Neoplasias Encefálicas/tratamiento farmacológico , Glioblastoma/tratamiento farmacológico , Compuestos de Fenilurea/uso terapéutico , Quinolinas/uso terapéutico , Receptores de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Anoicis , Neoplasias Encefálicas/complicaciones , Adhesión Celular , Puntos de Control del Ciclo Celular , Línea Celular Tumoral , Proliferación Celular , Gefitinib , Glioblastoma/complicaciones , Humanos , Neovascularización Patológica/complicaciones , Neovascularización Patológica/tratamiento farmacológico , Quinazolinas/uso terapéutico
18.
J Nat Med ; 71(2): 389-396, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28105567

RESUMEN

Oleuropein, a well-known olive polyphenol, has been shown to mediate neuroprotection in Alzheimer's disease and cerebral ischemia. We investigated the effects of oleuropein on pentylenetetrazole (PTZ)-induced seizures in male NMRI mice, with diazepam as the standard drug. We also examined the possible involvement of opioidergic/nitrergic pathways in the probable effects of oleuropein. Intraperitoneal (i.p.) administration of different doses of oleuropein (10, 20 and 30 mg/kg) significantly increased the seizure threshold 60 min prior to induction of seizure, in a dose-dependent manner. Administration of naltrexone (10 mg/kg, i.p.), an opioid receptor antagonist, completely reversed the anticonvulsant effects of oleuropein (10 mg/kg). On the other hand, the anticonvulsant effect of oleuropein (10 mg/kg) was blocked by a non-effective dose of nonspecific inhibitor of nitric oxide synthase (NOS), L-NAME (1 and 10 mg/kg, i.p) and a selective inhibitor of neuronal NOS, 7-nitroindazole (30 mg/kg, i.p.). However, the nitric oxide precursor, L-arginine (30 and 60 mg/kg, i.p.) potentiated the anticonvulsant activity of oleuropein (10 mg/kg). A selective inducible NOS inhibitor, aminoguanidine (100 mg/kg, i.p.) did not change the anticonvulsant activity of oleuropein. It seems that the opioidergic system and constitutive neuronal NOS may be involved in the anticonvulsant properties of oleuropein.


Asunto(s)
Iridoides/efectos adversos , Olea/química , Pentilenotetrazol/efectos adversos , Convulsiones/inducido químicamente , Animales , Productos Biológicos , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Glucósidos Iridoides , Masculino , Ratones
19.
Can J Physiol Pharmacol ; 95(1): 16-22, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28044452

RESUMEN

Recent studies suggest endogenous opioids and nitric oxide (NO) are involved in the pathophysiology of hepatic encephalopathy (HE). In this study, the interaction between the opioid receptor antagonist and NO was investigated on lipopolysaccharide (LPS)-induced HE in cirrhotic rats. Male rats were divided in the sham- and bile duct ligation (BDL)-operated groups. Animals were treated with saline; naltrexone (10 mg/kg, i.p.); or L-NAME (3 mg/kg, i.p.), alone or in combination with naltrexone. To induce HE, LPS (1 mg/kg, i.p.) was injected 1 h after the final drug treatment. HE scoring, hepatic histology, and plasma NO metabolites levels and mortality rate were recorded. Deteriorated level of consciousness and mortality after LPS administration significantly ameliorated following both acute and chronic treatment with naltrexone in cirrhotic rats. However, acute and chronic administration of L-NAME did not change HE scores in cirrhotic rats. The effects of acute but not chronic treatment of naltrexone on HE parameters were reversed by L-NAME. Plasma NOx concentrations elevated in BDL rats, which were decreased after acute and chronic treatment by naltrexone or L-NAME, significantly. We suggest both acute and chronic treatment with naltrexone improved LPS-induced HE. But, only acute treatment with naltrexone may affect through NO pathway.


Asunto(s)
Encefalopatía Hepática/tratamiento farmacológico , Encefalopatía Hepática/metabolismo , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/metabolismo , Naltrexona/administración & dosificación , Naltrexona/uso terapéutico , Óxido Nítrico/metabolismo , Animales , Interacciones Farmacológicas , Encefalopatía Hepática/sangre , Encefalopatía Hepática/inducido químicamente , Lipopolisacáridos , Hígado/patología , Cirrosis Hepática/sangre , Cirrosis Hepática/inducido químicamente , Masculino , NG-Nitroarginina Metil Éster/uso terapéutico , Nitratos/sangre , Nitritos/sangre , Ratas
20.
Fundam Clin Pharmacol ; 31(2): 185-193, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27616018

RESUMEN

Cyclosporine A (CsA) is known as a neuroprotective agent against cerebral ischemia/reperfusion (I/R) in animal models. However, the significant therapeutic effects of CsA have been observed in high systemic doses or manipulating the blood-brain barrier, resulting in systemic side effects and toxicity. As the liposome nanocarriers have been developed for efficient delivery of peptide and proteins, liposomal CsA (Lipo-CsA) could improve cerebral (I/R) injuries. In this study, the liposomal CsA formulation (CsA at dose of 2.5 mg/kg) was prepared to assess the brain injury outcomes in 90 min middle cerebral artery occlusion (MCAO) stroke model followed by 48 h reperfusion in treating rats. Five minutes after induction of cerebral ischemia in rats, intravenous (iv) administration of Lipo-CsA significantly (P < 0.001) recovered the infarct size, the brain edema, and the neurological activities compared to corresponding control groups following 48 h I/R. In addition, after 48 h cerebral I/R, Lipo-CsA potentially (P < 0.001) inhibited the inflammation responses including MPO activity and tumor necrosis factor-alpha level in comparison to other groups. In conclusion, the results indicate that the low dose of CsA in liposomal formulation is more effective compared to higher dose of free form of CsA in treatment of ischemic brain in rats.


Asunto(s)
Isquemia Encefálica/prevención & control , Ciclosporina/farmacología , Fármacos Neuroprotectores/farmacología , Daño por Reperfusión/tratamiento farmacológico , Animales , Ciclosporina/administración & dosificación , Modelos Animales de Enfermedad , Infarto de la Arteria Cerebral Media , Inflamación/prevención & control , Liposomas , Masculino , Nanopartículas , Fármacos Neuroprotectores/administración & dosificación , Peroxidasa/metabolismo , Ratas , Ratas Wistar , Daño por Reperfusión/patología , Accidente Cerebrovascular/prevención & control , Factores de Tiempo , Factor de Necrosis Tumoral alfa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...