Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Haematologica ; 108(10): 2639-2651, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37078267

RESUMEN

Although red blood cell (RBC) transfusions save lives, some patients develop clinically-significant alloantibodies against donor blood group antigens, which then have adverse effects in multiple clinical settings. Few effective measures exist to prevent RBC alloimmunization and/or eliminate alloantibodies in sensitized patients. Donor-related factors may influence alloimmunization; thus, there is an unmet clinical need to identify which RBC units are immunogenic. Repeat volunteer blood donors and donors on iron supplements have elevated reticulocyte counts compared to healthy non-donors. Early reticulocytes retain mitochondria and other components, which may act as danger signals in immune responses. Herein, we tested whether reticulocytes in donor RBC units could enhance RBC alloimmunization. Using a murine model, we demonstrate that transfusing donor RBC units with increased reticulocyte frequencies dose-dependently increased RBC alloimmunization rates and alloantibody levels. Transfusing reticulocyte-rich RBC units was associated with increased RBC clearance from the circulation and a robust proinflammatory cytokine response. As compared to previously reported post-transfusion RBC consumption patterns, erythrophagocytosis from reticulocyte-rich units was increasingly performed by splenic B cells. These data suggest that reticulocytes in a donated RBC unit impact the quality of blood transfused, are targeted to a distinct compartment, and may be an underappreciated risk factor for RBC alloimmunization.


Asunto(s)
Isoanticuerpos , Reticulocitos , Humanos , Ratones , Animales , Donantes de Sangre , Eritrocitos , Factores de Riesgo
2.
Molecules ; 27(22)2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-36432022

RESUMEN

Nitric oxide (NO) is implicated in numerous physiological processes, including vascular homeostasis. Reduced NO bioavailability is a hallmark of endothelial dysfunction, a prequel to many cardiovascular diseases. Biomarkers of an early NO-dependent endothelial dysfunction obtained from routine venous blood sampling would be of great interest but are currently lacking. The direct measurement of circulating NO remains a challenge due by its high reactivity and short half-life. The current techniques measure stable products from the NO signaling pathway or metabolic end products of NO that do not accurately represent its bioavailability and, therefore, endothelial function per se. In this review, we will concentrate on an original technique of low temperature electron paramagnetic resonance spectroscopy capable to directly measure the 5-α-coordinated heme nitrosyl-hemoglobin in the T (tense) state (5-α-nitrosyl-hemoglobin or HbNO) obtained from fresh venous human erythrocytes. In humans, HbNO reflects the bioavailability of NO formed in the vasculature from vascular endothelial NOS or exogenous NO donors with minor contribution from erythrocyte NOS. The HbNO signal is directly correlated with the vascular endothelial function and inversely correlated with vascular oxidative stress. Pilot studies support the validity of HbNO measurements both for the detection of endothelial dysfunction in asymptomatic subjects and for the monitoring of such dysfunction in patients with known cardiovascular disease. The impact of therapies or the severity of diseases such as COVID-19 infection involving the endothelium could also be monitored and their incumbent risk of complications better predicted through serial measurements of HbNO.


Asunto(s)
COVID-19 , Óxido Nítrico , Humanos , Óxido Nítrico/metabolismo , Hemoglobinas/metabolismo , Endotelio Vascular/metabolismo
3.
Front Immunol ; 13: 972127, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36311777

RESUMEN

Failure of immune tolerance can lead to autoantibody production resulting in autoimmune diseases, a broad spectrum of organ-specific or systemic disorders. Immune tolerance mechanisms regulate autoreactive T and B cells, yet some lymphocytes escape and promote autoantibody production. CD4+ T cell dysregulation, characterized by decreased or impaired regulatory cells (Tregs) and/or accumulation of memory and effector T cells such as TH17, plays a crucial role in the pathogenesis of these diseases. Antinuclear antibody (ANAs) testing is used as a first step for the diagnosis of autoimmune disorders, although most ANA-positive individuals do not have nor will develop an autoimmune disease. Studying the differences of T cell compartment among healthy blood donors, ANA-negative patients and ANA-positive patients, in which loss of tolerance have not led to autoimmunity, may improve our understanding on how tolerance mechanisms fail. Herein, we report that ANA-positive patients exhibit a distinct distribution of T cell subsets: significantly reduced frequencies of recent thymic emigrants (RTE) and naïve T cells, and significantly increased frequencies of central memory T cells, TH2 and TH17 cells; modulations within the T cell compartment are most profound within the 18-40 year age range. Moreover, CD4+ T cells in ANA-positive patients are metabolically active, as determined by a significant increase in mTORC1 and mTORC2 signals, compared to ANA-negative patients and healthy blood donors. No significant impairment of Treg numbers or pro-inflammatory cytokine production was observed. These results identify a unique T cell signature associated with autoantibody production in the absence of autoimmune disease.


Asunto(s)
Enfermedades Autoinmunes , Linfocitos T CD4-Positivos , Humanos , Adulto Joven , Subgrupos de Linfocitos T , Linfocitos T Reguladores , Autoinmunidad
4.
Front Cardiovasc Med ; 9: 854361, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35360022

RESUMEN

Background: Activation of the renin-angiotensin-aldosterone system (RAAS) plays a critical role in the development of hypertension. Published evidence on a putative "memory effect" of AngII on the vascular components is however scarce. Aim: To evaluate the long-term effects of transient exposure to AngII on the mouse heart and the arterial tissue. Methods: Blood pressure, cardiovascular tissue damage and remodeling, and systemic oxidative stress were evaluated in C57/B6/J mice at the end of a 2-week AngII infusion (AngII); 2 and 3 weeks after the interruption of a 2-week AngII treatment (AngII+2W and AngII +3W; so-called "memory" conditions) and control littermate (CTRL). RNAseq profiling of aortic tissues was used to identify potential key regulated genes accounting for legacy effects on the vascular phenotype. RNAseq results were validated by RT-qPCR and immunohistochemistry in a reproduction cohort of mice. Key findings were reproduced in a homotypic cell culture model. Results: The 2 weeks AngII infusion induced cardiac hypertrophy and aortic damage that persisted beyond AngII interruption and despite blood pressure normalization, with a sustained vascular expression of ICAM1, infiltration by CD45+ cells, and cell proliferation associated with systemic oxidative stress. RNAseq profiling in aortic tissue identified robust Acta2 downregulation at transcript and protein levels (α-smooth muscle actin) that was maintained beyond interruption of AngII treatment. Among regulators of Acta2 expression, the transcription factor Myocardin (Myocd), exhibited a similar expression pattern. The sustained downregulation of Acta2 and Myocd was associated with an increase in H3K27me3 in nuclei of aortic sections from mice in the "memory" conditions. A sustained downregulation of ACTA2 and MYOCD was reproduced in the cultured human aortic vascular smooth muscle cells upon transient exposure to Ang II. Conclusion: A transient exposure to Ang II produces prolonged vascular remodeling with robust ACTA2 downregulation, associated with epigenetic imprinting supporting a "memory" effect despite stimulus withdrawal.

5.
Front Immunol ; 12: 752330, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34867985

RESUMEN

Loss of humoral tolerance to red blood cells (RBCs) can lead to autoimmune hemolytic anemia (AIHA), a severe, and sometimes fatal disease. Patients with AIHA present with pallor, fatigue, decreased hematocrit, and splenomegaly. While secondary AIHA is associated with lymphoproliferative disorders, infections, and more recently, as an adverse event secondary to cancer immunotherapy, the etiology of primary AIHA is unknown. Several therapeutic strategies are available; however, there are currently no licensed treatments for AIHA and few therapeutics offer treatment-free durable remission. Moreover, supportive care with RBC transfusions can be challenging as most autoantibodies are directed against ubiquitous RBC antigens; thus, virtually all RBC donor units are incompatible. Given the severity of AIHA and the lack of treatment options, understanding the cellular and molecular mechanisms that facilitate the breakdown in tolerance would provide insight into new therapeutics. Herein, we report a new murine model of primary AIHA that reflects the biology observed in patients with primary AIHA. Production of anti-erythrocyte autoantibodies correlated with sex and age, and led to RBC antigen modulation, complement fixation, and anemia, as determined by decreased hematocrit and hemoglobin values and increased reticulocytes in peripheral blood. Moreover, autoantibody-producing animals developed splenomegaly, with altered splenic architecture characterized by expanded white pulp areas and nearly diminished red pulp areas. Additional analysis suggested that compensatory extramedullary erythropoiesis occurred as there were increased frequencies of RBC progenitors detectable in the spleen. No significant correlations between AIHA onset and inflammatory status or microbiome were observed. To our knowledge, this is the first report of a murine model that replicates observations made in humans with idiopathic AIHA. Thus, this is a tractable murine model of AIHA that can serve as a platform to identify key cellular and molecular pathways that are compromised, thereby leading to autoantibody formation, as well as testing new therapeutics and management strategies.


Asunto(s)
Anemia Hemolítica Autoinmune , Modelos Animales de Enfermedad , Animales , Ratones
6.
J Clin Invest ; 131(13)2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33974559

RESUMEN

BACKGROUNDAlthough convalescent plasma has been widely used to treat severe coronavirus disease 2019 (COVID-19), data from randomized controlled trials that support its efficacy are limited.METHODSWe conducted a randomized, double-blind, controlled trial among adults hospitalized with severe and critical COVID-19 at 5 sites in New York City (USA) and Rio de Janeiro (Brazil). Patients were randomized 2:1 to receive a single transfusion of either convalescent plasma or normal control plasma. The primary outcome was clinical status at 28 days following randomization, measured using an ordinal scale and analyzed using a proportional odds model in the intention-to-treat population.RESULTSOf 223 participants enrolled, 150 were randomized to receive convalescent plasma and 73 to receive normal control plasma. At 28 days, no significant improvement in the clinical scale was observed in participants randomized to convalescent plasma (OR 1.50, 95% confidence interval [CI] 0.83-2.68, P = 0.180). However, 28-day mortality was significantly lower in participants randomized to convalescent plasma versus control plasma (19/150 [12.6%] versus 18/73 [24.6%], OR 0.44, 95% CI 0.22-0.91, P = 0.034). The median titer of anti-SARS-CoV-2 neutralizing antibody in infused convalescent plasma units was 1:160 (IQR 1:80-1:320). In a subset of nasopharyngeal swab samples from Brazil that underwent genomic sequencing, no evidence of neutralization-escape mutants was detected.CONCLUSIONIn adults hospitalized with severe COVID-19, use of convalescent plasma was not associated with significant improvement in day 28 clinical status. However, convalescent plasma was associated with significantly improved survival. A possible explanation is that survivors remained hospitalized at their baseline clinical status.TRIAL REGISTRATIONClinicalTrials.gov, NCT04359810.FUNDINGAmazon Foundation, Skoll Foundation.


Asunto(s)
COVID-19/terapia , SARS-CoV-2 , Adulto , Anciano , Anciano de 80 o más Años , Brasil/epidemiología , COVID-19/inmunología , COVID-19/mortalidad , Método Doble Ciego , Femenino , Humanos , Inmunización Pasiva , Estimación de Kaplan-Meier , Masculino , Persona de Mediana Edad , Ciudad de Nueva York/epidemiología , Pandemias , SARS-CoV-2/inmunología , Índice de Severidad de la Enfermedad , Resultado del Tratamiento , Sueroterapia para COVID-19
7.
Sci Transl Med ; 12(564)2020 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-33028705

RESUMEN

Pathological remodeling of the myocardium has long been known to involve oxidant signaling, but strategies using systemic antioxidants have generally failed to prevent it. We sought to identify key regulators of oxidant-mediated cardiac hypertrophy amenable to targeted pharmacological therapy. Specific isoforms of the aquaporin water channels have been implicated in oxidant sensing, but their role in heart muscle is unknown. RNA sequencing from human cardiac myocytes revealed that the archetypal AQP1 is a major isoform. AQP1 expression correlates with the severity of hypertrophic remodeling in patients with aortic stenosis. The AQP1 channel was detected at the plasma membrane of human and mouse cardiac myocytes from hypertrophic hearts, where it colocalized with NADPH oxidase-2 and caveolin-3. We show that hydrogen peroxide (H2O2), produced extracellularly, is necessary for the hypertrophic response of isolated cardiac myocytes and that AQP1 facilitates the transmembrane transport of H2O2 through its water pore, resulting in activation of oxidant-sensitive kinases in cardiac myocytes. Structural analysis of the amino acid residues lining the water pore of AQP1 supports its permeation by H2O2 Deletion of Aqp1 or selective blockade of the AQP1 intrasubunit pore inhibited H2O2 transport in mouse and human cells and rescued the myocyte hypertrophy in human induced pluripotent stem cell-derived engineered heart muscle. Treatment of mice with a clinically approved AQP1 inhibitor, Bacopaside, attenuated cardiac hypertrophy. We conclude that cardiac hypertrophy is mediated by the transmembrane transport of H2O2 by the water channel AQP1 and that inhibitors of AQP1 represent new possibilities for treating hypertrophic cardiomyopathies.


Asunto(s)
Acuaporina 1 , Células Madre Pluripotentes Inducidas , Animales , Humanos , Peróxido de Hidrógeno/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Ratones , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo
8.
Redox Biol ; 34: 101399, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-31838004

RESUMEN

Oxidative stress perturbs vascular homeostasis leading to endothelial dysfunction and cardiovascular diseases. Vascular reactive oxygen species (ROS) reduce nitric oxide (NO) bioactivity, a hallmark of cardiovascular and metabolic diseases. We measured steady-state vascular NO levels through the quantification of heme nitrosylated hemoglobin (5-coordinate-α-HbNO) in venous erythrocytes of healthy human subjects using electron paramagnetic resonance (EPR) spectroscopy. To examine how ROS may influence HbNO complex formation and stability, we identified the pro- and anti-oxidant enzymatic sources in human erythrocytes and their relative impact on intracellular redox state and steady-state HbNO levels. We demonstrated that pro-oxidant enzymes such as NADPH oxidases are expressed and produce a significant amount of ROS at the membrane of healthy erythrocytes. In addition, the steady-state levels of HbNO were preserved when NOX (e.g. NOX1 and NOX2) activity was inhibited. We next evaluated the impact of selective antioxidant enzymatic systems on HbNO stability. Peroxiredoxin 2 and catalase, in particular, played an important role in endogenous and exogenous H2O2 degradation, respectively. Accordingly, inhibitors of peroxiredoxin 2 and catalase significantly decreased erythrocyte HbNO concentration. Conversely, steady-state levels of HbNO were preserved upon supplying erythrocytes with exogenous catalase. These findings support HbNO measurements as indicators of vascular oxidant stress and of NO bioavailability and potentially, as useful biomarkers of early endothelial dysfunction.


Asunto(s)
Hemoglobinas , Peróxido de Hidrógeno , Espectroscopía de Resonancia por Spin del Electrón , Eritrocitos/metabolismo , Hemoglobinas/metabolismo , Humanos , NADPH Oxidasas , Óxido Nítrico , Oxidación-Reducción , Especies Reactivas de Oxígeno
9.
PLoS One ; 13(7): e0200352, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29995915

RESUMEN

Reduced bioavailability of nitric oxide (NO) is a major feature of endothelial dysfunction characteristic of cardiovascular and metabolic diseases but the short half-life of NO precludes its easy quantification in circulating blood for early diagnosis. In erythrocytes, NO can react with hemoglobin to form an iron-nitrosyl complex (5-coordinate-α-HbNO) directly quantifiable by Electron Paramagnetic Resonance spectroscopy (EPR) in mouse, rat and human venous blood ex vivo. However, the sources of the nitrosylating species in vivo and optimal conditions of HbNO preservation for diagnostic use in human erythrocytes are unknown. Using EPR spectroscopy, we found that HbNO stability was significantly higher under hypoxia (equivalent to venous pO2; 12.0±0.2% degradation of HbNO at 30 minutes) than at room air (47.7±0.2% degradation) in intact erythrocytes; at 20°C (15.2±0.3% degradation after 30 min versus 29.6±0.1% at 37°C) and under acidic pH (31.7±0.8% versus 62.2±0.4% degradation after 30 min at physiological pH) at 50% of haematocrit. We next examined the relative contribution of NO synthase (NOS) from the vasculature or in erythrocytes themselves as a source of nitrosylating NO. We detected a NOS activity (and eNOS expression) in human red blood cells (RBC), and in RBCs from eNOS(+/+) (but not eNOS(-/-)) mice, as measured by HbNO formation and nitrite/nitrate accumulation. NO formation was increased after inhibition of arginase but abrogated upon NOS inhibition in human RBC and in RBCs from eNOS(+/+) (but not eNOS(-/-)) mice. However, the HbNO signal from freshly drawn venous RBCs was minimally sensitive to the inhibitors ex vivo, while it was enhanced upon caveolin-1 deletion in vivo, suggesting a minor contribution of erythrocyte NOS to HbNO complex formation compared with vascular endothelial NOS or other paracrine NO sources. We conclude that HbNO formation in rodent and human venous erythrocytes is mainly influenced by vascular NO sources despite the erythrocyte NOS activity, so that its measurement by EPR could serve as a surrogate for NO-dependent endothelial function.


Asunto(s)
Eritrocitos/metabolismo , Hemoglobina Glucada/metabolismo , Óxido Nítrico/metabolismo , Animales , Caveolina 1/genética , Caveolina 1/metabolismo , Espectroscopía de Resonancia por Spin del Electrón , Humanos , Concentración de Iones de Hidrógeno , Hipoxia/metabolismo , Técnicas In Vitro , Ratones Endogámicos C57BL , Ratones Noqueados , Óxido Nítrico Sintasa de Tipo III/genética , Óxido Nítrico Sintasa de Tipo III/metabolismo , Oxígeno/metabolismo , Ratas Wistar , Temperatura , Venas
10.
Free Radic Biol Med ; 108: 524-532, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28392282

RESUMEN

An increased risk of venous thromboembolism was identified in young women consuming combined contraceptive pills (CP) suggesting a disturbance of vascular homeostasis but the impact of CP on endothelial function and redox status of the vasculature was not thoroughly analyzed. We measured the bioavailability of nitric oxide (NO), a main mediator of vascular homeostasis in a cohort of young female subjects (n=114) and compared the results in users or not of CPs containing ethinyl estradiol and synthetic progestogens. Vascular NO availability was measured by quantification of the heme-nitrosylated hemoglobin (5-coordinate-α-HbNO) concentrations in venous erythrocytes using Electron Paramagnetic Resonance spectroscopy (EPR). Vascular oxidative status was assessed by measurement of peroxides in plasma, and of the thiol redox state in erythrocytes. In addition, endothelial function was assessed by digital reactive hyperemia pulse tonometry using EndoPAT. We observed that the HbNO level was significantly lower in erythrocytes of subjects consuming CPs versus controls (162±8 and 217±12 nmol/L). This correlated with significantly increased levels of plasma peroxides (1.8±0.1mmol/L versus 0.8±0.1mmol/L in controls) and decreased concentrations of erythrocyte reduced thiols (by 12%). Interestingly, the level of oxidized ceruloplasmin-Cu(II) was also significantly higher in the group consuming CPs. The EndoPAT index showed a trend towards impairment in CP users, and was significantly lower in subjects that consumed CPs containing drospirenone, and had lowest erythrocyte HbNO levels. CONCLUSION: This cross-sectional cohort study demonstrates that a decrease of HbNO measured by quantitative EPR in human venous erythrocytes is correlated with the development of endothelial dysfunction under CPs consumption, in parallel with increased vascular oxidative stress.


Asunto(s)
Anticonceptivos/efectos adversos , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/metabolismo , Endotelio Vascular/patología , Eritrocitos/metabolismo , Etinilestradiol/efectos adversos , Hemoglobina Glucada/metabolismo , Óxido Nítrico/metabolismo , Congéneres de la Progesterona/efectos adversos , Tromboembolia Venosa/metabolismo , Adulto , Células Cultivadas , Estudios de Cohortes , Anticonceptivos/uso terapéutico , Estudios Transversales , Espectroscopía de Resonancia por Spin del Electrón , Etinilestradiol/uso terapéutico , Femenino , Humanos , Oxidación-Reducción , Estrés Oxidativo , Peróxidos/sangre , Congéneres de la Progesterona/uso terapéutico , Tromboembolia Venosa/etiología , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...