Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 175
Filtrar
2.
EBioMedicine ; 99: 104914, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38113759

RESUMEN

BACKGROUND: Cerebral Cavernous Malformation (CCM) is a rare cerebrovascular disease, characterized by the presence of multiple vascular malformations that may result in intracerebral hemorrhages (ICHs), seizure(s), or focal neurological deficits (FND). Familial CCM (fCCM) is due to loss of function mutations in one of the three independent genes KRIT1 (CCM1), Malcavernin (CCM2), or Programmed Cell death 10 (PDCD10/CCM3). The aim of this study was to identify plasma protein biomarkers of fCCM to assess the severity of the disease and predict its progression. METHODS: Here, we have investigated plasma samples derived from n = 71 symptomatic fCCM patients (40 female/31 male) and n = 17 healthy donors (HD) (9 female/8 male) of the Phase 1/2 Treat_CCM trial, using multiplexed protein profiling approaches. FINDINGS: Biomarkers as sCD14 (p = 0.00409), LBP (p = 0.02911), CXCL4 (p = 0.038), ICAM-1 (p = 0.02013), ANG2 (p = 0.026), CCL5 (p = 0.00403), THBS1 (p = 0.0043), CRP (p = 0.0092), and HDL (p = 0.027), were significantly different in fCCM compared to HDs. Of note, sENG (p = 0.011), THBS1 (p = 0.011) and CXCL4 (p = 0.011), were correlated to CCM genotype. sROBO4 (p = 0.014), TM (p = 0.026) and CRP (p = 0.040) were able to predict incident adverse clinical events, such as ICH, FND or seizure. GDF-15, FLT3L, CXCL9, FGF-21 and CDCP1, were identified as predictors of the formation of new MRI-detectable lesions over 2-year follow-up. Furthermore, the functional relevance of ang2, thbs1, robo4 and cdcp1 markers was validated by zebrafish pre-clinical model of fCCM. INTERPRETATION: Overall, our study identifies a set of biochemical parameters to predict CCM progression, suggesting biological interpretations and potential therapeutic approaches to CCM disease. FUNDING: Italian Medicines Agency, Associazione Italiana per la Ricerca sul Cancro (AIRC), ERC, Leducq Transatlantic Network of Excellence, Swedish Research Council.


Asunto(s)
Hemangioma Cavernoso del Sistema Nervioso Central , Animales , Humanos , Masculino , Femenino , Hemangioma Cavernoso del Sistema Nervioso Central/etiología , Hemangioma Cavernoso del Sistema Nervioso Central/genética , Proteínas Proto-Oncogénicas/genética , Proteínas Asociadas a Microtúbulos/genética , Pez Cebra/metabolismo , Biomarcadores , Convulsiones , Antígenos de Neoplasias , Moléculas de Adhesión Celular
3.
FASEB J ; 37(4): e22894, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36961390

RESUMEN

Regulation of vascular permeability to plasma is essential for tissue and organ homeostasis and is mediated by endothelial cell-to-cell junctions that tightly regulate the trafficking of molecules between blood and tissue. The single-pass transmembrane glycoprotein CD93 is upregulated in endothelial cells during angiogenesis and controls cytoskeletal dynamics. However, its role in maintaining homeostasis by regulating endothelial barrier function has not been elucidated yet. Here, we demonstrate that CD93 interacts with vascular endothelial (VE)-cadherin and limits its phosphorylation and turnover. CD93 deficiency in vitro and in vivo induces phosphorylation of VE-cadherin under basal conditions, displacing it from endothelial cell-cell contacts. Consistent with this, endothelial junctions are defective in CD93-/- mice, and the blood-brain barrier permeability is enhanced. Mechanistically, CD93 regulates VE-cadherin phosphorylation and turnover at endothelial junctions through the Rho/Rho kinase-dependent pathway. In conclusion, our results identify CD93 as a key regulator of VE-cadherin stability at endothelial junctions, opening up possibilities for therapeutic strategies directed to control vascular permeability.


Asunto(s)
Cadherinas , Células Endoteliales , Animales , Ratones , Fosforilación , Células Endoteliales/metabolismo , Cadherinas/genética , Cadherinas/metabolismo , Antígenos CD/genética , Antígenos CD/metabolismo , Permeabilidad Capilar/fisiología , Endotelio Vascular/metabolismo , Células Cultivadas , Uniones Adherentes/metabolismo
4.
Eur Radiol ; 33(6): 4158-4166, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36602570

RESUMEN

OBJECTIVES: To test whether quantitative susceptibility mapping (QSM) of cerebral cavernous malformations (CCMs) assessed at baseline may predict the presence or absence of haemorrhagic signs at 1-year follow-up. METHODS: Familial CCM patients were enrolled in the longitudinal multicentre study Treat-CCM. The 3-T MRI scan allowed performing a semi-automatic segmentation of CCMs and computing the maximum susceptibility in each segmented CCM (QSMmax) at baseline. CCMs were classified as haemorrhagic and non-haemorrhagic at baseline and then subclassified according to the 1-year (t1) evolution. Between-group differences were tested, and the diagnostic accuracy of QSMmax in predicting the presence or absence of haemorrhagic signs in CCMs was calculated with ROC analyses. RESULTS: Thirty-three patients were included in the analysis, and a total of 1126 CCMs were segmented. QSMmax was higher in haemorrhagic CCMs than in non-haemorrhagic CCMs (p < 0.001). In haemorrhagic CCMs at baseline, the accuracy of QSMmax in differentiating CCMs that were still haemorrhagic from CCMs that recovered from haemorrhage at t1 calculated as area under the curve (AUC) was 0.78 with sensitivity 62.69%, specificity 82.35%, positive predictive value (PPV) 93.3% and negative predictive value (NPV) 35.9% (QSMmax cut-off ≥ 1462.95 ppb). In non-haemorrhagic CCMs at baseline, AUC was 0.91 in differentiating CCMs that bled at t1 from stable CCMs with sensitivity 100%, specificity 81.9%, PPV 5.1%, and NPV 100% (QSMmax cut-off ≥ 776.29 ppb). CONCLUSIONS: The QSMmax in CCMs at baseline showed high accuracy in predicting the presence or absence of haemorrhagic signs at 1-year follow-up. Further effort is required to test the role of QSM in follow-up assessment and therapeutic trials in multicentre CCM studies. KEY POINTS: • QSM in semi-automatically segmented CCM was feasible. • The maximum magnetic susceptibility in a single CCM at baseline may predict the presence or absence of haemorrhagic signs at 1-year follow-up. • Multicentric studies are needed to enforce the role of QSM in predicting the CCMs' haemorrhagic evolution in patients affected by familial and sporadic forms.


Asunto(s)
Hemangioma Cavernoso del Sistema Nervioso Central , Humanos , Hemangioma Cavernoso del Sistema Nervioso Central/diagnóstico por imagen , Proyectos Piloto , Imagen por Resonancia Magnética
5.
Lancet Neurol ; 22(1): 35-44, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36403580

RESUMEN

BACKGROUND: Observations in people with cerebral cavernous malformations, and in preclinical models of this disorder, suggest that the ß-blocker propranolol might reduce the risk of intracerebral haemorrhage. We aimed to evaluate the safety and efficacy of prolonged treatment with propranolol to reduce the incidence of symptomatic intracerebral haemorrhage or focal neurological deficit in people with familial cerebral cavernous malformations. METHODS: We conducted a randomised, open-label, blinded-endpoint, phase 2 pilot trial (Treat_CCM) at six national reference centres for rare diseases in Italy. People aged 18 years or older with symptomatic familial cerebral cavernous malformation were eligible for enrolment. Participants were randomly assigned (2:1) to receive either oral propranolol (20-320 mg daily) plus standard care (intervention group), or standard care alone (control group), for 24 months. Participants, caregivers, and investigators were aware of treatment group assignment. Participants had clinical assessments and 3 T brain MRI at baseline and at 12 and 24 months. The primary outcome was new occurrence of symptomatic intracerebral haemorrhage or focal neurological deficit attributable to cerebral cavernous malformation over 24 months. Outcome assessors were masked to treatment group assignment. The primary analysis was done in the intention-to-treat population. Because of the pilot study design, we chose a one-sided 80% CI, which could either exclude a clinically meaningful effect or show a signal of efficacy. This trial is registered with EudraCT, 2017-003595-30, and ClinicalTrials.gov, NCT03589014, and is closed to recruitment. FINDINGS: Between April 11, 2018, and Dec 5, 2019, 95 people were assessed for eligibility and 83 were enrolled, of whom 57 were assigned to the propranolol plus standard care group and 26 to the standard care alone group. The mean age of participants was 46 years (SD 15); 48 (58%) were female and 35 (42%) were male. The incidence of symptomatic intracerebral haemorrhage or focal neurological deficit was 1·7 (95% CI 1·4-2·0) cases per 100 person-years (two [4%] of 57 participants) in the propranolol plus standard care group and 3·9 (3·1-4·7) per 100 person-years (two [8%] of 26) in the standard care alone group (univariable hazard ratio [HR] 0·43, 80% CI 0·18-0·98). The univariable HR showed a signal of efficacy, according to predefined criteria. The incidence of hospitalisation did not differ between groups (8·2 cases [95% CI 7·5-8·9] per 100 person-years in the propranolol plus standard care group vs 8·2 [95% CI 7·1-9·3] per 100 person-years in the standard care alone group). One participant in the standard care alone group died of sepsis. Three participants in the propranolol plus standard care group discontinued propranolol due to side-effects (two reported hypotension and one reported weakness). INTERPRETATION: Propranolol was safe and well tolerated in this population. Propranolol might be beneficial for reducing the incidence of clinical events in people with symptomatic familial cerebral cavernous malformations, although this trial was not designed to be adequately powered to investigate efficacy. A definitive phase 3 trial of propranolol in people with symptomatic familial cerebral cavernous malformations is justified. FUNDING: Italian Medicines Agency, Associazione Italiana per la Ricerca sul Cancro, Swedish Science Council, Knut and Alice Wallenberg Foundation, CARIPLO Foundation, Italian Ministry of Health.


Asunto(s)
Hemangioma Cavernoso del Sistema Nervioso Central , Humanos , Masculino , Femenino , Persona de Mediana Edad , Hemangioma Cavernoso del Sistema Nervioso Central/diagnóstico por imagen , Hemangioma Cavernoso del Sistema Nervioso Central/tratamiento farmacológico , Propranolol/farmacología , Propranolol/uso terapéutico , Proyectos Piloto , Resultado del Tratamiento , Hemorragia Cerebral/inducido químicamente , Hemorragia Cerebral/epidemiología , Hemorragia Cerebral/tratamiento farmacológico
6.
Blood ; 140(20): 2154-2169, 2022 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-35981497

RESUMEN

Cerebral cavernous malformation (CCM) is a neurovascular disease that results in various neurological symptoms. Thrombi have been reported in surgically resected CCM patient biopsies, but the molecular signatures of these thrombi remain elusive. Here, we investigated the kinetics of thrombi formation in CCM and how thrombi affect the vasculature and contribute to cerebral hypoxia. We used RNA sequencing to investigate the transcriptome of mouse brain endothelial cells with an inducible endothelial-specific Ccm3 knock-out (Ccm3-iECKO). We found that Ccm3-deficient brain endothelial cells had a higher expression of genes related to the coagulation cascade and hypoxia when compared with wild-type brain endothelial cells. Immunofluorescent assays identified key molecular signatures of thrombi such as fibrin, von Willebrand factor, and activated platelets in Ccm3-iECKO mice and human CCM biopsies. Notably, we identified polyhedrocytes in Ccm3-iECKO mice and human CCM biopsies and report it for the first time. We also found that the parenchyma surrounding CCM lesions is hypoxic and that more thrombi correlate with higher levels of hypoxia. We created an in vitro model to study CCM pathology and found that human brain endothelial cells deficient for CCM3 expressed elevated levels of plasminogen activator inhibitor-1 and had a redistribution of von Willebrand factor. With transcriptomics, comprehensive imaging, and an in vitro CCM preclinical model, this study provides experimental evidence that genes and proteins related to the coagulation cascade affect the brain vasculature and promote neurological side effects such as hypoxia in CCMs. This study supports the concept that antithrombotic therapy may be beneficial for patients with CCM.


Asunto(s)
Hemangioma Cavernoso del Sistema Nervioso Central , Humanos , Animales , Ratones , Hemangioma Cavernoso del Sistema Nervioso Central/genética , Hemangioma Cavernoso del Sistema Nervioso Central/metabolismo , Células Endoteliales/metabolismo , Proteínas Reguladoras de la Apoptosis/genética , Tromboinflamación , Factor de von Willebrand/metabolismo , Hipoxia/metabolismo
7.
Genes (Basel) ; 13(6)2022 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-35741725

RESUMEN

Cerebral cavernous malformations (CCM) are capillary malformations affecting the central nervous system and commonly present with headaches, epilepsy and stroke. Treatment of CCM is symptomatic, and its prevention is limited. CCM are often sporadic but sometimes may be multifocal and/or affect multiple family members. Heterozygous pathogenic variants in PDCD10 cause the rarest and apparently most severe genetic variant of familial CCM. We carried out an RNA-Seq and a Q-PCR validation analysis in Pdcd10-silenced and wild-type mouse endothelial cells in order to better elucidate CCM molecular pathogenesis. Ninety-four differentially expressed genes presented an FDR-corrected p-value < 0.05. A functionally clustered dendrogram showed that differentially expressed genes cluster in cell proliferation, oxidative stress, vascular processes and immune response gene-ontology functions. Among differentially expressed genes, the major cluster fell in signaling related to inflammation and pathogen recognition, including HIF1α and Nos2 signaling and immune regulation. Validation analysis performed on wild-type, Pdcd10-null and Pdcd10-null reconstituted cell lines was consistent with RNA-Seq data. This work confirmed previous mouse transcriptomic data in endothelial cells, which are recognized as a critical tissue for CCM formation and expands the potential molecular signatures of PDCD10-related familial CCM to alterations in inflammation and pathogen recognition pathways.


Asunto(s)
Células Endoteliales , Inflamación , Animales , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Células Endoteliales/metabolismo , Perfilación de la Expresión Génica , Hemangioma Cavernoso del Sistema Nervioso Central , Hipoxia/metabolismo , Inflamación/genética , Inflamación/metabolismo , Ratones
8.
STAR Protoc ; 3(2): 101448, 2022 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-35712011

RESUMEN

In the study of cerebral cavernous malformations (CCMs), the quantification of lesion burden is the main parameter for evaluation of disease severity and efficacy of drugs. We describe a reliable and cost-effective protocol to evaluate the number and the size of vascular malformations in the murine brain. This approach is based on histology and confocal imaging and can be performed with standard laboratory equipment. We detail the preparation of brain sections followed by image acquisition and analysis. For complete details on the use and execution of this protocol, please refer to Maderna et al. (2022).


Asunto(s)
Hemangioma Cavernoso del Sistema Nervioso Central , Animales , Encéfalo/diagnóstico por imagen , Hemangioma Cavernoso del Sistema Nervioso Central/diagnóstico por imagen , Técnicas Histológicas , Ratones
10.
Cell Mol Life Sci ; 79(6): 340, 2022 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-35661927

RESUMEN

Cerebral cavernous malformations (CCM) are low-flow vascular lesions prone to cause severe hemorrhage-associated neurological complications. Pathogenic germline variants in CCM1, CCM2, or CCM3 can be identified in nearly 100% of CCM patients with a positive family history. In line with the concept that tumor-like mechanisms are involved in CCM formation and growth, we here demonstrate an abnormally increased proliferation rate of CCM3-deficient endothelial cells in co-culture with wild-type cells and in mosaic human iPSC-derived vascular organoids. The observation that NSC59984, an anticancer drug, blocked the abnormal proliferation of mutant endothelial cells further supports this intriguing concept. Fluorescence-activated cell sorting and RNA sequencing revealed that co-culture induces upregulation of proangiogenic chemokine genes in wild-type endothelial cells. Furthermore, genes known to be significantly downregulated in CCM3-/- endothelial cell mono-cultures were upregulated back to normal levels in co-culture with wild-type cells. These results support the hypothesis that wild-type ECs facilitate the formation of a niche that promotes abnormal proliferation of mutant ECs. Thus, targeting the cancer-like features of CCMs is a promising new direction for drug development.


Asunto(s)
Células Endoteliales , Hemangioma Cavernoso del Sistema Nervioso Central , Proteínas Reguladoras de la Apoptosis/genética , Proliferación Celular , Técnicas de Cocultivo , Células Endoteliales/patología , Hemangioma Cavernoso del Sistema Nervioso Central/genética , Hemangioma Cavernoso del Sistema Nervioso Central/patología , Humanos , Proteínas Proto-Oncogénicas/genética
11.
iScience ; 25(3): 103943, 2022 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-35265815

RESUMEN

Cavernomas are multi-lumen and blood-filled vascular malformations which form in the brain and the spinal cord. They lead to hemorrhage, epileptic seizures, neurological deficits, and paresthesia. An effective medical treatment is still lacking, and the available murine models for cavernomas have several limitations for preclinical studies. These include disease phenotypes that differ from human diseases, such as restriction of the lesions to the cerebellum, and absence of acute hemorrhage. Additional limitations of current murine models include rapid development of lesions, which are lethal before the first month of age. Here, we have characterized a murine model that recapitulates features of the human disease: lesions develop after weaning throughout the entire CNS, including the spinal cord, and undergo acute hemorrhage. This provides a preclinical model to develop new drugs for treatment of acute hemorrhage in the brain and spinal cord, as an unmet medical emergency for patients with cavernomas.

12.
Cell Mol Life Sci ; 79(4): 206, 2022 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-35333979

RESUMEN

Cerebral Cavernous Malformation (CCM) is a brain vascular disease with various neurological symptoms. In this study, we describe the inflammatory profile in CCM and show for the first time the formation of neutrophil extracellular traps (NETs) in rodents and humans with CCM. Through RNA-seq analysis of cerebellum endothelial cells from wild-type mice and mice with an endothelial cell-specific ablation of the Ccm3 gene (Ccm3iECKO), we show that endothelial cells from Ccm3iECKO mice have an increased expression of inflammation-related genes. These genes encode proinflammatory cytokines and chemokines, as well as adhesion molecules, which promote recruitment of inflammatory and immune cells. Similarly, immunoassays showed elevated levels of these cytokines and chemokines in the cerebellum of the Ccm3iECKO mice. Consistently, both flow cytometry and immunofluorescence analysis showed infiltration of different subsets of leukocytes into the CCM lesions. Neutrophils, which are known to fight against infection through different strategies, including the formation of NETs, represented the leukocyte subset within the most pronounced increase in CCM. Here, we detected elevated levels of NETs in the blood and the deposition of NETs in the cerebral cavernomas of Ccm3iECKO mice. Degradation of NETs by DNase I treatment improved the vascular barrier. The deposition of NETs in the cavernomas  of patients with CCM confirms the clinical relevance of NETs in CCM.


Asunto(s)
Trampas Extracelulares , Hemangioma Cavernoso del Sistema Nervioso Central , Animales , Proteínas Reguladoras de la Apoptosis/genética , Células Endoteliales/metabolismo , Trampas Extracelulares/metabolismo , Hemangioma Cavernoso del Sistema Nervioso Central/genética , Hemangioma Cavernoso del Sistema Nervioso Central/metabolismo , Hemangioma Cavernoso del Sistema Nervioso Central/patología , Humanos , Inflamación/patología , Proteínas de la Membrana/metabolismo , Ratones
13.
Neuro Oncol ; 24(3): 398-411, 2022 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-34347079

RESUMEN

BACKGROUND: Tumor vessels in glioma are molecularly and functionally abnormal, contributing to treatment resistance. Proteins differentially expressed in glioma vessels can change vessel phenotype and be targeted for therapy. ELTD1 (Adgrl4) is an orphan member of the adhesion G-protein-coupled receptor family upregulated in glioma vessels and has been suggested as a potential therapeutic target. However, the role of ELTD1 in regulating vessel function in glioblastoma is poorly understood. METHODS: ELTD1 expression in human gliomas and its association with patient survival was determined using tissue microarrays and public databases. The role of ELTD1 in regulating tumor vessel phenotype was analyzed using orthotopic glioma models and ELTD1-/- mice. Endothelial cells isolated from murine gliomas were transcriptionally profiled to determine differentially expressed genes and pathways. The consequence of ELTD1 deletion on glioma immunity was determined by treating tumor-bearing mice with PD-1-blocking antibodies. RESULTS: ELTD1 levels were upregulated in human glioma vessels, increased with tumor malignancy, and were associated with poor patient survival. Progression of orthotopic gliomas was not affected by ELTD1 deletion, however, tumor vascular function was improved in ELTD1-/- mice. Bioinformatic analysis of differentially expressed genes indicated increased inflammatory response and decreased proliferation in tumor endothelium in ELTD1-/- mice. Consistent with an enhanced inflammatory response, ELTD1 deletion improved T-cell infiltration in GL261-bearing mice after PD-1 checkpoint blockade. CONCLUSION: Our data demonstrate that ELTD1 participates in inducing vascular dysfunction in glioma, and suggest that targeting of ELTD1 may normalize the vessels and improve the response to immunotherapy.


Asunto(s)
Neoplasias Encefálicas , Glioma , Receptores Acoplados a Proteínas G/genética , Animales , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Células Endoteliales/metabolismo , Eliminación de Gen , Glioma/tratamiento farmacológico , Glioma/patología , Humanos , Ratones , Ratones Noqueados , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Linfocitos T/metabolismo
14.
Dev Cell ; 56(20): 2841-2855.e8, 2021 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-34559979

RESUMEN

Glioblastoma are heterogeneous tumors composed of highly invasive and highly proliferative clones. Heterogeneity in invasiveness could emerge from discrete biophysical properties linked to specific molecular expression. We identified clones of patient-derived glioma propagating cells that were either highly proliferative or highly invasive and compared their cellular architecture, migratory, and biophysical properties. We discovered that invasiveness was linked to cellular fitness. The most invasive cells were stiffer, developed higher mechanical forces on the substrate, and moved stochastically. The mechano-chemical-induced expression of the formin FMN1 conferred invasive strength that was confirmed in patient samples. Moreover, FMN1 expression was also linked to motility in other cancer and normal cell lines, and its ectopic expression increased fitness parameters. Mechanistically, FMN1 acts from the microtubule lattice and promotes a robust mechanical cohesion, leading to highly invasive motility.


Asunto(s)
Movimiento Celular/fisiología , Forminas/metabolismo , Glioblastoma/metabolismo , Invasividad Neoplásica/patología , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Proteínas Fetales/metabolismo , Glioblastoma/patología , Humanos , Proteínas de Microfilamentos/metabolismo
15.
Genes Dis ; 8(6): 798-813, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34522709

RESUMEN

The programmed cell death 10 (PDCD10) gene was originally identified as an apoptosis-related gene, although it is now usually known as CCM3, as the third causative gene of cerebral cavernous malformation (CCM). CCM is a neurovascular disease that is characterized by vascular malformations and is associated with headaches, seizures, focal neurological deficits, and cerebral hemorrhage. The PDCD10/CCM3 protein has multiple subcellular localizations and interacts with several multi-protein complexes and signaling pathways. Thus PDCD10/CCM3 governs many cellular functions, which include cell-to-cell junctions and cytoskeleton organization, cell proliferation and apoptosis, and exocytosis and angiogenesis. Given its central role in the maintenance of homeostasis of the cell, dysregulation of PDCD10/CCM3 can result in a wide range of altered cell functions. This can lead to severe diseases, including CCM, cognitive disability, and several types of cancers. Here, we review the multifaceted roles of PDCD10/CCM3 in physiology and pathology, with a focus on its functions beyond CCM.

16.
Nano Lett ; 21(22): 9805-9815, 2021 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-34516144

RESUMEN

The blood-brain barrier (BBB) is highly selective and acts as the interface between the central nervous system and circulation. While the BBB is critical for maintaining brain homeostasis, it represents a formidable challenge for drug delivery. Here we synthesized gold nanoparticles (AuNPs) for targeting the tight junction specifically and demonstrated that transcranial picosecond laser stimulation of these AuNPs post intravenous injection increases the BBB permeability. The BBB permeability change can be graded by laser intensity, is entirely reversible, and involves increased paracellular diffusion. BBB modulation does not lead to significant disruption in the spontaneous vasomotion or the structure of the neurovascular unit. This strategy allows the entry of immunoglobulins and viral gene therapy vectors, as well as cargo-laden liposomes. We anticipate this nanotechnology to be useful for tissue regions that are accessible to light or fiberoptic application and to open new avenues for drug screening and therapeutic interventions in the central nervous system.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Transporte Biológico , Barrera Hematoencefálica , Oro/química , Rayos Láser
17.
J Cell Sci ; 134(15)2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34338295

RESUMEN

Endothelial-to-mesenchymal transition (EndMT) is the biological process through which endothelial cells transdifferentiate into mesenchymal cells. During embryo development, EndMT regulates endocardial cushion formation via TGFß/BMP signaling. In adults, EndMT is mainly activated during pathological conditions. Hence, it is necessary to characterize molecular regulators cooperating with TGFß signaling in driving EndMT, to identify potential novel therapeutic targets to treat these pathologies. Here, we studied YAP, a transcriptional co-regulator involved in several biological processes, including epithelial-to-mesenchymal transition (EMT). As EndMT is the endothelial-specific form of EMT, and YAP (herein referring to YAP1) and TGFß signaling cross-talk in other contexts, we hypothesized that YAP contributes to EndMT by modulating TGFß signaling. We demonstrate that YAP is required to trigger TGFß-induced EndMT response, specifically contributing to SMAD3-driven EndMT early gene transcription. We provide novel evidence that YAP acts as SMAD3 transcriptional co-factor and prevents GSK3ß-mediated SMAD3 phosphorylation, thus protecting SMAD3 from degradation. YAP is therefore emerging as a possible candidate target to inhibit pathological TGFß-induced EndMT at early stages.


Asunto(s)
Células Endoteliales , Factor de Crecimiento Transformador beta , Células Endoteliales/metabolismo , Transición Epitelial-Mesenquimal , Fosforilación , Factor de Crecimiento Transformador beta/metabolismo
19.
Trends Mol Med ; 27(4): 314-331, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33309601

RESUMEN

Leakage from blood vessels into tissues is governed by mechanisms that control endothelial barrier function to maintain homeostasis. Dysregulated endothelial permeability contributes to many conditions and can influence disease morbidity and treatment. Diverse approaches used to study endothelial permeability have yielded a wealth of valuable insights. Yet, ongoing questions, technical challenges, and unresolved controversies relating to the mechanisms and relative contributions of barrier regulation, transendothelial sieving, and transport of fluid, solutes, and particulates complicate interpretations in the context of vascular physiology and pathophysiology. Here, we describe recent in vivo findings and other advances in understanding endothelial barrier function with the goal of identifying and reconciling controversies over cellular and molecular processes that regulate the vascular barrier in health and disease.


Asunto(s)
Permeabilidad Capilar/fisiología , Animales , Células Endoteliales/metabolismo , Factores de Crecimiento Endotelial/metabolismo , Endotelio Vascular/fisiología , Humanos , Uniones Intercelulares , Receptores Opioides/metabolismo , Receptores de Factores de Crecimiento Endotelial Vascular/metabolismo , Transducción de Señal , Factor A de Crecimiento Endotelial Vascular/metabolismo , Proteínas de Unión al GTP rho/metabolismo
20.
Elife ; 92020 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-33138917

RESUMEN

Cerebral cavernous malformation (CCM) is a rare neurovascular disease that is characterized by enlarged and irregular blood vessels that often lead to cerebral hemorrhage. Loss-of-function mutations to any of three genes results in CCM lesion formation; namely, KRIT1, CCM2, and PDCD10 (CCM3). Here, we report for the first time in-depth single-cell RNA sequencing, combined with spatial transcriptomics and immunohistochemistry, to comprehensively characterize subclasses of brain endothelial cells (ECs) under both normal conditions and after deletion of Pdcd10 (Ccm3) in a mouse model of CCM. Integrated single-cell analysis identifies arterial ECs as refractory to CCM transformation. Conversely, a subset of angiogenic venous capillary ECs and respective resident endothelial progenitors appear to be at the origin of CCM lesions. These data are relevant for the understanding of the plasticity of the brain vascular system and provide novel insights into the molecular basis of CCM disease at the single cell level.


Asunto(s)
Células Endoteliales/citología , Hemangioma Cavernoso del Sistema Nervioso Central/fisiopatología , Animales , Proteínas Reguladoras de la Apoptosis/metabolismo , Arterias/patología , Encéfalo/irrigación sanguínea , Encéfalo/patología , Diferenciación Celular , Modelos Animales de Enfermedad , Eliminación de Gen , Inmunohistoquímica , Ratones , Ratones Endogámicos C57BL , Microscopía Confocal , Mitosis , Neovascularización Patológica , Fenotipo , RNA-Seq , Análisis de Secuencia de ARN , Transducción de Señal/genética , Análisis de la Célula Individual , Tamoxifeno/farmacología , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...