Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Ther Nucleic Acids ; 35(1): 102112, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38292874

RESUMEN

Chronic hepatitis B virus (HBV) infection remains a global health problem due to the lack of treatments that prevent viral rebound from HBV covalently closed circular (ccc)DNA. In addition, HBV DNA integrates in the human genome, serving as a source of hepatitis B surface antigen (HBsAg) expression, which impairs anti-HBV immune responses. Cytosine base editors (CBEs) enable precise conversion of a cytosine into a thymine within DNA. In this study, CBEs were used to introduce stop codons in HBV genes, HBs and Precore. Transfection with mRNA encoding a CBE and a combination of two guide RNAs led to robust cccDNA editing and sustained reduction of the viral markers in HBV-infected HepG2-NTCP cells and primary human hepatocytes. Furthermore, base editing efficiently reduced HBsAg expression from HBV sequences integrated within the genome of the PLC/PRF/5 and HepG2.2.15 cell lines. Finally, in the HBV minicircle mouse model, using lipid nanoparticulate delivery, we demonstrated antiviral efficacy of the base editing approach with a >3log10 reduction in serum HBV DNA and >2log10 reduction in HBsAg, and 4/5 mice showing HBsAg loss. Combined, these data indicate that base editing can introduce mutations in both cccDNA and integrated HBV DNA, abrogating HBV replication and silencing viral protein expression.

2.
Cancer Med ; 8(15): 6709-6716, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31503420

RESUMEN

BACKGROUND: MicroRNAs have recently emerged as promising circulating biomarkers in diverse cancer types, including ovarian cancer. We utilized conditional, doxycycline-induced fallopian tube (FT)-derived cancer models to identify changes in miRNA expression in tumors and plasma, and further validated the murine findings in high-grade ovarian cancer patient samples. METHODS: We analyzed 566 biologically informative miRNAs in doxycycline-induced FT and metastatic tumors as well as plasma samples derived from murine models bearing inactivation of Brca, Tp53, and Pten genes. We identified miRNAs that showed a consistent pattern of dysregulated expression and validated our results in human patient serum samples. RESULTS: We identified six miRNAs that were significantly dysregulated in doxycycline-induced FTs (P < .05) and 130 miRNAs differentially regulated in metastases compared to normal fallopian tissues (P < .05). Furthermore, we validated miR-21a-5p, miR-146a-5p, and miR-126a-3p as dysregulated in both murine doxycycline-induced FT and metastatic tumors, as well as in murine plasma and patient serum samples. CONCLUSIONS: In summary, we identified changes in miRNA expression that potentially accompany tumor development in murine models driven by commonly found genetic alterations in cancer patients. Further studies are required to test both the function of these miRNAs in driving the disease and their utility as potential biomarkers for diagnosis and/or disease progression.


Asunto(s)
Doxiciclina/efectos adversos , Trompas Uterinas/patología , Perfilación de la Expresión Génica/métodos , MicroARNs/genética , Neoplasias Ováricas/genética , Animales , Biomarcadores de Tumor/genética , Trompas Uterinas/química , Trompas Uterinas/efectos de los fármacos , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones , Persona de Mediana Edad , Trasplante de Neoplasias , Neoplasias Ováricas/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...