Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Gene Ther ; 29(7-8): 399-406, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35650428

RESUMEN

The marketing approval, about ten years ago, of the first disease modulator for patients with cystic fibrosis harboring specific CFTR genotypes (~5% of all patients) brought new hope for their treatment. To date, several therapeutic strategies have been approved and the number of CFTR mutations targeted by therapeutic agents is increasing. Although these drugs do not reverse the existing disease, they help to increase the median life expectancy. However, on the basis of their CFTR genotype, ~10% of patients presently do not qualify for any of the currently available CFTR modulator therapies, particularly patients with splicing mutations (~12% of the reported CFTR mutations). Efforts are currently made to develop therapeutic agents that target disease-causing CFTR variants that affect splicing. This highlights the need to fully identify them by scanning non-coding regions and systematically determine their functional consequences. In this review, we present some examples of CFTR alterations that affect splicing events and the different therapeutic options that are currently developed and tested for splice switching.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística , Fibrosis Quística , Fibrosis Quística/tratamiento farmacológico , Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Exones , Humanos , Mutación , Empalme del ARN/genética
2.
J Pathol ; 253(2): 186-197, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33095908

RESUMEN

Cystic fibrosis (CF), a genetic disorder, is characterized by chronic lung disease. Small non-coding RNAs are key regulators of gene expression and participate in various processes, which are dysregulated in CF; however, they remain poorly studied. Here, we determined the complete microRNAs (miRNAs) expression pattern in three CF ex vivo models. The miRNA profiles of air-liquid interface cultures of airway epithelia (bronchi, nasal cells, and nasal polyps) samples from patients with CF and non-CF controls were obtained by deep sequencing. Compared with non-CF controls, several miRNAs were deregulated in CF samples; for instance, miR-181a-5p and the miR-449 family were upregulated. Moreover, mature miRNAs often showed variations (i.e. isomiRs) relative to their reference sequence, such as miR-101, suggesting that miRNAs consist of heterogeneous repertoires of multiple isoforms with different effects on gene expression. Analysis of miR-181a-5p and miR-101-3p roles indicated that they regulate the expression of WISP1, a key component of cell proliferation/migration programs. We showed that miR-101 and miR-181a-5p participated in aberrant recapitulation of wound healing programs by controlling WISP1 mRNA and protein level. Our miRNA expression data bring new insights into CF physiopathology and define new potential therapeutic targets in CF. © 2020 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Asunto(s)
Proteínas CCN de Señalización Intercelular/genética , Fibrosis Quística/genética , MicroARNs/genética , Proteínas Proto-Oncogénicas/genética , Movimiento Celular , Proliferación Celular , Fibrosis Quística/patología , Fibrosis Quística/terapia , Expresión Génica , Genes Reporteros , Humanos , ARN Mensajero/genética , Análisis de Matrices Tisulares , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...