Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Antioxidants (Basel) ; 11(10)2022 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-36290746

RESUMEN

This study investigated the efficacy of aerobic exercise training (AET) in the prevention of dyslipidemia, insulin resistance (IR), and atherogenesis induced by severe low-sodium (LS) diet. LDL receptor knockout (LDLR KO) mice were fed a low-sodium (LS) (0.15% NaCl) or normal-sodium (NS; 1.27% NaCl) diet, submitted to AET in a treadmill, 5 times/week, 60 min/day, 15 m/min, for 90 days, or kept sedentary. Blood pressure (BP), plasma total cholesterol (TC) and triglyceride (TG) concentrations, lipoprotein profile, and insulin sensitivity were evaluated at the end of the AET protocol. Lipid infiltration, angiotensin II type 1 receptor (AT1), receptor for advanced glycation end products (RAGE), carboxymethyllysine (CML), and 4-hydroxynonenal (4-HNE) contents as well as gene expression were determined in the brachiocephalic trunk. BP and TC and gene expression were similar among groups. Compared to the NS diet, the LS diet increased vascular lipid infiltration, CML, RAGE, 4-HNE, plasma TG, LDL-cholesterol, and VLDL-TG. Conversely, the LS diet reduced vascular AT1 receptor, insulin sensitivity, HDL-cholesterol, and HDL-TG. AET prevented arterial lipid infiltration; increases in CML, RAGE, and 4-HNE contents; and reduced AT1 levels and improved LS-induced peripheral IR. The current study showed that AET counteracted the deleterious effects of chronic LS diet in an atherogenesis-prone model by ameliorating peripheral IR, lipid infiltration, CML, RAGE, 4-HNE, and AT1 receptor in the intima-media of the brachiocephalic trunk. These events occurred independently of the amelioration of plasma-lipid profile, which was negatively affected by the severe dietary-sodium restriction.

2.
Nutrients ; 13(7)2021 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-34202724

RESUMEN

BACKGROUND: A low-sodium (LS) diet reduces blood pressure, contributing to the prevention of cardiovascular diseases. However, intense dietary sodium restriction impairs insulin sensitivity and worsens lipid profile. Considering the benefits of aerobic exercise training (AET), the effect of LS diet and AET in hepatic lipid content and gene expression was investigated in LDL receptor knockout (LDLr-KO) mice. METHODS: Twelve-week-old male LDLr-KO mice fed a normal sodium (NS) or LS diet were kept sedentary (S) or trained (T) for 90 days. Body mass, plasma lipids, insulin tolerance testing, hepatic triglyceride (TG) content, gene expression, and citrate synthase (CS) activity were determined. Results were compared by 2-way ANOVA and Tukey's post-test. RESULTS: Compared to NS, LS increased body mass and plasma TG, and impaired insulin sensitivity, which was prevented by AET. The LS-S group, but not the LS-T group, presented greater hepatic TG than the NS-S group. The LS diet increased the expression of genes related to insulin resistance (ApocIII, G6pc, Pck1) and reduced those involved in oxidative capacity (Prkaa1, Prkaa2, Ppara, Lipe) and lipoprotein assembly (Mttp). CONCLUSION: AET prevented the LS-diet-induced TG accumulation in the liver by improving insulin sensitivity and the expression of insulin-regulated genes and oxidative capacity.


Asunto(s)
Dieta Hiposódica/efectos adversos , Resistencia a la Insulina/fisiología , Metabolismo de los Lípidos/fisiología , Condicionamiento Físico Animal/fisiología , Receptores de LDL/deficiencia , Animales , Peso Corporal , Citrato (si)-Sintasa/metabolismo , Expresión Génica , Lípidos/sangre , Hígado/metabolismo , Masculino , Ratones , Ratones Noqueados , Sodio en la Dieta/metabolismo , Triglicéridos/metabolismo
3.
J Biol Chem ; 296: 100344, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33524391

RESUMEN

A low-sodium (LS) diet has been shown to reduce blood pressure (BP) and the incidence of cardiovascular diseases. However, severe dietary sodium restriction promotes insulin resistance (IR) and dyslipidemia in animal models and humans. Thus, further clarification of the long-term consequences of LS is needed. Here, we investigated the effects of chronic LS on gastrocnemius gene and protein expression and lipidomics and its association with IR and plasma lipids in LDL receptor knockout mice. Three-month-old male mice were fed a normal sodium diet (NS; 0.5% Na; n = 12-19) or LS (0.06% Na; n = 14-20) over 90 days. Body mass (BM), BP, plasma total cholesterol, triacylglycerol (TG), glucose, hematocrit, and IR were evaluated. LS increased BM (9%), plasma TG (51%), blood glucose (19%), and IR (46%) when compared with the NS. RT-qPCR analysis revealed that genes involved in lipid uptake and oxidation were increased by the LS: Fabp3 (106%), Prkaa1 (46%), and Cpt1 (74%). Genes and proteins (assessed by Western blotting) involved in insulin signaling were not changed by the LS. Similarly, lipid species classically involved in muscle IR, such as diacylglycerols and ceramides detected by ultra-high-performance liquid chromatography coupled to mass spectrometry, were also unchanged by LS. Species of phosphatidylcholines (68%), phosphatidylinositol (90%), and free fatty acids (59%) increased while cardiolipins (41%) and acylcarnitines (9%) decreased in gastrocnemius in response to LS and were associated with glucose disposal rate. Together these results suggest that chronic LS alters glycerophospholipid and fatty acids species in gastrocnemius that may contribute to glucose and lipid homeostasis derangements in mice.


Asunto(s)
Dieta Hiposódica , Resistencia a la Insulina , Metabolismo de los Lípidos , Músculo Esquelético/metabolismo , Animales , Lipidómica , Masculino , Ratones , Sodio en la Dieta/metabolismo
4.
PLoS One ; 13(7): e0201106, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30059520

RESUMEN

Because collagen type V (Col V) can be exposed in tissue injury, we hypothesized that oral administration of this collagen species modulates the inflammation and remodeling of experimental synovitis, avoiding joint destruction, and that the modulation may differ according to the temporal administration. Arthritis (IA, n = 20) was induced in Lewis rats by intraarticular (ia) injection of 500 µg of methylated bovine serum albumin (mBSA) emulsified in complete Freund's adjuvant (CFA) (10 µl) followed by an intraarticular booster of mBSA (50 µg) in saline (50 µl) administered at 7 and 14 days. The control group received saline (50 µl, ia). After the first intraarticular injection, ten IA animals were supplemented via gavage with Col V (500 µg/300 µl) daily for 30 days (IA/Suppl). The control group received saline (50 µL) and Col V supplement in the same way (Suppl). Col V oral administration in IA/Suppl led to 1) inhibited edema and severe inflammatory cell infiltration, 2) decreased collagen fiber content, 3) decreased collagen type I, 4) inhibited lymphocyte subpopulations and macrophages, 5) inhibited IL-1ß, IL-10, IL-17 and TNF-α production and 6) increased expression of caspase-9 in the synovial tissue. In conclusion, Col V supplementation decreased synovial inflammation and the fibrotic response, possibly by increased the apoptosis of inflammatory cells.


Asunto(s)
Artritis Experimental/tratamiento farmacológico , Colágeno Tipo V/farmacología , Membrana Sinovial/efectos de los fármacos , Administración Oral , Animales , Artritis Experimental/inmunología , Artritis Experimental/patología , Caspasa 9/metabolismo , Citocinas/metabolismo , Edema/tratamiento farmacológico , Edema/inmunología , Edema/patología , Adyuvante de Freund , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Inflamación/patología , Masculino , Metaloproteinasa 2 de la Matriz/metabolismo , Ratas Endogámicas Lew , Albúmina Sérica Bovina , Membrana Sinovial/inmunología , Membrana Sinovial/patología
5.
Front Physiol ; 8: 644, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28928671

RESUMEN

Background: Oxysterols are bioactive lipids that control cellular cholesterol synthesis, uptake, and exportation besides mediating inflammation and cytotoxicity that modulate the development of atherosclerosis. Aerobic exercise training (AET) prevents and regresses atherosclerosis by the improvement of lipid metabolism, reverse cholesterol transport (RCT) and antioxidant defenses in the arterial wall. We investigated in dyslipidemic mice the role of a 6-week AET program in the content of plasma and aortic arch cholesterol and oxysterols, the expression of genes related to cholesterol flux and the effect of the exercise-mimetic AICAR, an AMPK activator, in macrophage oxysterols concentration. Methods: Sixteen-week old male apo E KO mice fed a chow diet were included in the protocol. Animals were trained in a treadmill running, 15 m/min, 5 days/week, for 60 min (T; n = 29). A control group was kept sedentary (S; n = 32). Plasma lipids and glucose were determined by enzymatic techniques and glucometer, respectively. Cholesterol and oxysterols in aortic arch and macrophages were measured by gas chromatography/mass spectrometry. The expression of genes involved in lipid metabolism was determined by RT-qPCR. The effect of AMPK in oxysterols metabolism was determined in J774 macrophages treated with 0.25 mM AICAR. Results: Body weight and plasma TC, TG, HDL-c, glucose, and oxysterols were similar between groups. As compared to S group, AET enhanced 7ß-hydroxycholesterol (70%) and reduced cholesterol (32%) in aorta. In addition, exercise increased Cyp27a1 (54%), Cd36 (75%), Cat (70%), Prkaa1 (40%), and Prkaa2 (51%) mRNA. In macrophages, the activation of AMPK followed by incubation with HDL2 increased Abca1 (52%) and Cd36 (220%) and decrease Prkaa1 (19%), Cyp27a1 (47%) and 7α-hydroxycholesterol level. Conclusion: AET increases 7ß-hydroxycholesterol in the aortic arch of dyslipidemic mice, which is related to the enhanced expression of Cd36. In addition, the increase and reduction of Cyp27a1 and Cyp7b1 in trained mice may contribute to enhance levels of 27-OH C. Both oxysterols may act as an alternative pathway for the RCT contributing to the reduction of cholesterol in the aortic arch preventing atherogenesis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...