Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cells ; 13(5)2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38474338

RESUMEN

BACKGROUND: Cutaneous melanoma arises from skin melanocytes and has a high risk of metastatic spread. Despite better prevention, earlier detection, and the development of innovative therapies, melanoma incidence and mortality increase annually. Major clinical risk factors for melanoma include fair skin, an increased number of nevi, the presence of dysplastic nevi, and a family history of melanoma. However, several external inducers seem to be associated with melanoma susceptibility such as environmental exposure, primarily unprotected sun experience, alcohol consumption, and heavy metals. In recent years, epidemiological studies have highlighted a potential risk of ß-hexachlorocyclohexane (ß-HCH), the most studied organochlorine pesticide, causing cancer induction including melanoma. METHODS: We evaluated in vitro the impact of this pollutant on epidermal and dermal cells, attempting to describe mechanisms that could render cutaneous cells more prone to oncogenic transformation. RESULTS: We demonstrated that ß-HCH impacts melanocyte biology with a highly cell-type specific signature that involves perturbation of AKT/mTOR and Wnt/ß-catenin signaling, and AMPK activation, resulting in lowering energy reserve, cell proliferation, and pigment production. CONCLUSIONS: In conclusion, long-term exposure to persistent organic pollutants damages melanocyte metabolism in its function of melanin production with a consequent reduction of melanogenesis indicating a potential augmented skin cancer risk.


Asunto(s)
Melanoma , Neoplasias Cutáneas , Humanos , Melanoma/patología , Neoplasias Cutáneas/patología , Melanocitos/metabolismo , Hexaclorociclohexano/metabolismo
2.
Ann Ist Super Sanita ; 50(2): 133-8, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24968911

RESUMEN

BACKGROUND: The inhalation of fibrous amphiboles can result in pulmonary fibrosis, lung cancer and mesothelioma. Although these fibres have the same disease-causing potential, their different morphologies and chemical composition can determine different biological activities. An unusual cluster of mesothelioma was evidenced in Biancavilla (Sicily) where no inhabitant had been significantly exposed to asbestos. OBJECTIVE: We herein discuss the mechanism of action of amphiboles, focusing on the fibres identified in the study area. RESULTS: Human lung carcinoma cells have been exposed to two different materials: prismatic fluoro-edenite and fibres with fluoro-edenitic composition. Only in the second case, they exhibit features typical of transformed cells, such as multinucleation, prosurvival activity and pro-inflammatory cytokine release. Accordingly, in vivo studies demonstrated that the fibrous sample only could induce a mesotheliomatogenic effect. CONCLUSIONS: Fibres with fluoro-edenitic composition behave similarly to the asbestos crocidolite, whose connection with inflammation and lung cancer is well established.


Asunto(s)
Asbestos Anfíboles/toxicidad , Enfermedades Endémicas , Mesotelioma/epidemiología , Animales , Línea Celular Tumoral , Humanos , Exposición por Inhalación/efectos adversos , Mesotelioma/etiología , Mesotelioma/veterinaria , Neoplasias/epidemiología , Neoplasias/etiología , Neoplasias/veterinaria , Tamaño de la Partícula , Sicilia/epidemiología
3.
FEBS J ; 281(15): 3473-88, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24925215

RESUMEN

Mitochondria are dynamic organelles that constantly change shape and structure in response to different stimuli and metabolic demands of the cell. The Escherichia coli protein toxin cytotoxic necrotizing factor 1 (CNF1) has recently been reported to influence mitochondrial activity in a mouse model of Rett syndrome and to increase ATP content in the brain tissue of an Alzheimer's disease mouse model. In the present work, the ability of CNF1 to influence mitochondrial activity was investigated in IEC-6 normal intestinal crypt cells. In these cells, the toxin was able to induce an increase in cellular ATP content, probably due to an increment of the mitochondrial electron transport chain. In addition, the CNF1-induced Rho GTPase activity also caused changes in the mitochondrial architecture that mainly consisted in the formation of a complex network of elongated mitochondria. The involvement of the cAMP-dependent protein kinase A signaling pathway was postulated. Our results demonstrate that CNF1 positively affects mitochondria by bursting their energetic function and modifying their morphology.


Asunto(s)
Adenosina Trifosfato/biosíntesis , Toxinas Bacterianas/farmacología , Proteínas de Escherichia coli/farmacología , Mitocondrias/metabolismo , Animales , Línea Celular Tumoral , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Activación Enzimática/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Mitocondrias/efectos de los fármacos , Tamaño Mitocondrial/efectos de los fármacos , Ratas , Transducción de Señal , Proteína de Unión al GTP rac1/metabolismo , Proteínas de Unión al GTP rho/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...