Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Geroscience ; 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38869712

RESUMEN

White matter hyperintensities of vascular origin (WMH) are commonly found in individuals over 60 and increase in prevalence with age. The significance of WMH is well-documented, with strong associations with cognitive impairment, risk of stroke, mental health, and brain structure deterioration. Consequently, careful monitoring is crucial for the early identification and management of individuals at risk. Luckily, WMH are detectable and quantifiable on standard MRI through visual assessment scales, but it is time-consuming and has high rater variability. Addressing this issue, the main aim of our study is to decipher the utility of quantitative measures of WMH, assessed with automatic tools, in establishing risk profiles for cerebrovascular deterioration. For this purpose, first, we work to determine the most precise WMH segmentation open access tool compared to clinician manual segmentations (LST-LPA, LST-LGA, SAMSEG, and BIANCA), offering insights into methodology and usability to balance clinical precision with practical application. The results indicated that supervised algorithms (LST-LPA and BIANCA) were superior, particularly in detecting small WMH, and can improve their consistency when used in parallel with unsupervised tools (LST-LGA and SAMSEG). Additionally, to investigate the behavior and real clinical utility of these tools, we tested them in a real-world scenario (N = 300; age > 50 y.o. and MMSE > 26), proposing an imaging biomarker for moderate vascular damage. The results confirmed its capacity to effectively identify individuals at risk comparing the cognitive and brain structural profiles of cognitively healthy adults above and below the resulted threshold.

2.
medRxiv ; 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38798616

RESUMEN

Cerebrovascular damage from small vessel disease (SVD) occurs in healthy and pathological aging. SVD markers, such as white matter hyperintensities (WMH), are commonly found in individuals over 60 and increase in prevalence with age. WMHs are detectable on standard MRI by adhering to the STRIVE criteria. Currently, visual assessment scales are used in clinical and research scenarios but is time-consuming and has rater variability, limiting its practicality. Addressing this issue, our study aimed to determine the most precise WMH segmentation software, offering insights into methodology and usability to balance clinical precision with practical application. This study employed a dataset comprising T1, FLAIR, and DWI images from 300 cognitively healthy older adults. WMHs in this cohort were evaluated using four automated neuroimaging tools: Lesion Prediction Algorithm (LPA) and Lesion Growth Algorithm (LGA) from Lesion Segmentation Tool (LST), Sequence Adaptive Multimodal Segmentation (SAMSEG), and Brain Intensity Abnormalities Classification Algorithm (BIANCA). Additionally, clinicians manually segmented WMHs in a subsample of 45 participants to establish a gold standard. The study assessed correlations with the Fazekas scale, algorithm performance, and the influence of WMH volume on reliability. Results indicated that supervised algorithms were superior, particularly in detecting small WMHs, and can improve their consistency when used in parallel with unsupervised tools. The research also proposed a biomarker for moderate vascular damage, derived from the top 95th percentile of WMH volume in healthy individuals aged 50 to 60. This biomarker effectively differentiated subgroups within the cohort, correlating with variations in brain structure and behavior.

4.
Front Neurosci ; 17: 1223950, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37655010

RESUMEN

The alpha rhythm is often associated with relaxed wakefulness or idling and is altered by various factors. Abnormalities in the alpha rhythm have been linked to several neurological and psychiatric disorders, including Alzheimer's disease. Transcranial alternating current stimulation (tACS) has been proposed as a potential tool to restore a disrupted alpha rhythm in the brain by stimulating at the individual alpha frequency (IAF), although some research has produced contradictory results. In this study, we applied an IAF-tACS protocol over parieto-occipital areas to a sample of healthy subjects and measured its effects over the power spectra. Additionally, we used computational models to get a deeper understanding of the results observed in the experiment. Both experimental and numerical results showed an increase in alpha power of 8.02% with respect to the sham condition in a widespread set of regions in the cortex, excluding some expected parietal regions. This result could be partially explained by taking into account the orientation of the electric field with respect to the columnar structures of the cortex, showing that the gyrification in parietal regions could generate effects in opposite directions (hyper-/depolarization) at the same time in specific brain regions. Additionally, we used a network model of spiking neuronal populations to explore the effects that these opposite polarities could have on neural activity, and we found that the best predictor of alpha power was the average of the normal components of the electric field. To sum up, our study sheds light on the mechanisms underlying tACS brain activity modulation, using both empirical and computational approaches. Non-invasive brain stimulation techniques hold promise for treating brain disorders, but further research is needed to fully understand and control their effects on brain dynamics and cognition. Our findings contribute to this growing body of research and provide a foundation for future studies aimed at optimizing the use of non-invasive brain stimulation in clinical settings.

5.
Front Hum Neurosci ; 17: 1068216, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36875239

RESUMEN

Cerebrovascular disease is responsible for up to 20% of cases of dementia worldwide, but also it is a major comorbid contributor to the progression of other neurodegenerative diseases, like Alzheimer's disease. White matter hyperintensities (WMH) are the most prevalent imaging marker in cerebrovascular disease. The presence and progression of WMH in the brain have been associated with general cognitive impairment and the risk to develop all types of dementia. The aim of this piece of work is the assessment of brain functional differences in an MCI population based on the WMH volume. One-hundred and twenty-nine individuals with mild cognitive impairment (MCI) underwent a neuropsychological evaluation, MRI assessment (T1 and Flair), and MEG recordings (5 min of eyes closed resting state). Those participants were further classified into vascular MCI (vMCI; n = 61, mean age 75 ± 4 years, 35 females) or non-vascular MCI (nvMCI; n = 56, mean age 72 ± 5 years, 36 females) according to their WMH total volume, assessed with an automatic detection toolbox, LST (SPM12). We used a completely data-driven approach to evaluate the differences in the power spectra between the groups. Interestingly, three clusters emerged: One cluster with widespread larger theta power and two clusters located in both temporal regions with smaller beta power for vMCI compared to nvMCI. Those power signatures were also associated with cognitive performance and hippocampal volume. Early identification and classification of dementia pathogenesis is a crucially important goal for the search for more effective management approaches. These findings could help to understand and try to palliate the contribution of WMH to particular symptoms in mixed dementia progress.

6.
Front Psychol ; 14: 1069990, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36818101

RESUMEN

Introduction: Heavy drinking (HD) prevalent pattern of alcohol consumption among adolescents, particularly concerning because of their critical vulnerability to the neurotoxic effects of ethanol. Adolescent neurodevelopment is characterized by critical neurobiological changes of the prefrontal, temporal and parietal regions, important for the development of executive control processes, such as inhibitory control (IC). In the present Magnetoencephalography (MEG) study, we aimed to describe the relationship between electrophysiological Functional Connectivity (FC) during an IC task and HD development, as well as its impact on functional neuromaturation. Methods: We performed a two-year longitudinal protocol with two stages. In the first stage, before the onset of HD, we recorded brain electrophysiological activity from a sample of 67 adolescents (mean age = 14.6 ± 0.7) during an IC task. Alcohol consumption was measured using the AUDIT test and a semi-structured interview. Two years later, in the second stage, 32 of the 67 participants (mean age 16.7 ± 0.7) completed a similar protocol. As for the analysis in the first stage, the source-space FC matrix was calculated, and then, using a cluster-based permutation test (CBPT) based on Spearman's correlation, we calculated the correlation between the FC of each cortical source and the number of standard alcohol units consumed two years later. For the analysis of longitudinal change, we followed a similar approach. We calculated the symmetrized percentage change (SPC) between FC at both stages and performed a CBPT analysis, analyzing the correlation between FC change and the level of alcohol consumed in a regular session. Results: The results revealed an association between higher beta-band FC in the prefrontal and temporal regions and higher consumption years later. Longitudinal results showed that greater future alcohol consumption was associated with an exacerbated reduction in the FC of the same areas. Discussion: These results underline the existence of several brain functional differences prior to alcohol misuse and their impact on functional neuromaturation.

7.
Addict Biol ; 27(4): e13199, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35754100

RESUMEN

Adolescent Binge Drinking (BD) has become an increasing health and social concern, with detrimental consequences for brain development and functional integrity. However, research on neurophysiological and neuropsychological traits predisposing to BD are limited at this time. In this work, we conducted a 2-year longitudinal magnetoencephalography (MEG) study over a cohort of initially alcohol-naïve adolescents with the purpose of exploring anomalies in resting-state electrophysiological networks, impulsivity, sensation-seeking, and dysexecutive behaviour able to predict future BD patterns. In a sample of 67 alcohol-naïve adolescents (age = 14.5 ± 0.9), we measured resting-state activity using MEG. Additionally, we evaluated their neuropsychological traits using self-report ecological scales (BIS-11, SSS-V, BDEFS, BRIEF-SR and DEX). In a second evaluation, 2 years later, we measured participant's alcohol consumption, sub-dividing the original sample in two groups: future binge drinkers (22 individuals, age 14.6 ± 0.8; eight females) and future light/no drinkers (17 individuals, age 14.5 ± 0.8; eight females). Then, we searched for differences predating alcohol BD intake. We found abnormalities in MEG resting state, in a form of gamma band hyperconnectivity, in those adolescents who transitioned into BD years later. Furthermore, they showed higher impulsivity, dysexecutive behaviours and sensation seeking, positively correlated with functional connectivity (FC). Sensation seeking and impulsivity mainly predicted BD severity in the future, while the relationship between dysexecutive trait and FC with future BD was mediated by sensation seeking. These findings shed light to electrophysiological and neuropsychological traits of vulnerability towards alcohol consumption. We hypothesise that these differences may rely on divergent neurobiological development of inhibitory neurotransmission pathways and executive prefrontal circuits.


Asunto(s)
Consumo Excesivo de Bebidas Alcohólicas , Consumo de Alcohol en Menores , Adolescente , Consumo de Bebidas Alcohólicas , Etanol , Femenino , Humanos , Conducta Impulsiva/fisiología , Magnetoencefalografía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...