Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microorganisms ; 12(2)2024 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-38399724

RESUMEN

Understanding how microbial communities survive in extreme environmental pressure is critical for interpreting ecological patterns and microbial diversity. Great Gobi A Strictly Protected Area represents an intriguing model for studying the bacterial community since it is a protected and intact wild area of the Mongolian desert. In this work, the composition of a bacterial community of the soil from four oases was characterized by extracting total DNA and sequencing through the Illumina NovaSeq platform. In addition, the soil's chemical and physical properties were determined, and their influence on shaping the microbial communities was evaluated. The results showed a high variability of bacterial composition among oases. Moreover, combining specific chemical and physical parameters significantly shapes the bacterial community among oases. Data obtained suggested that the oases were highly variable in physiochemical parameters and bacterial communities despite the similar extreme climate conditions. Moreover, core functional microbiome were constituted by aerobic chemoheterotrophy and chemoheterotrophy, mainly contributed by the most abundant bacteria, such as Actinobacteriota, Pseudomonadota, and Firmicutes. This result supposes a metabolic flexibility for sustaining life in deserts. Furthermore, as the inhabitants of the extreme regions are likely to produce new chemical compounds, isolation of key taxa is thus encouraged.

2.
Antibiotics (Basel) ; 12(7)2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37508275

RESUMEN

Essential oils (EOs) from medicinal plants have long been used in traditional medicine for their widely known antimicrobial properties and represent a promising reservoir of bioactive compounds against multidrug-resistant pathogens. Endophytes may contribute to the yield and composition of EOs, representing a useful tool for biotechnological applications. In this work, we investigated the genomic basis of this potential contribution. The annotated genomes of four endophytic strains isolated from Origanum vulgare L. were used to obtain KEGG ortholog codes, which were used for the annotation of different pathways in KEGG, and to evaluate whether endophytes might harbor the (complete) gene sets for terpene and/or plant hormone biosynthesis. All strains possessed ortholog genes for the mevalonate-independent pathway (MEP/DOXP), allowing for the production of isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP) precursors. Ortholog genes for the next steps in terpenoid biosynthesis were scarce. All the strains possess potential plant growth promotion (PGP) ability, as shown by the presence of orthologous genes involved in the biosynthesis of indoleacetic acid. The main contribution of endophytes to the yield and composition of O. vulgare EO very likely resides in their PGP activities and in the biosynthesis of precursors of bioactive compounds.

3.
Gene ; 877: 147533, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37279865

RESUMEN

Gene elongation consists in an in-tandem duplication of a gene and divergence and fusion of the two copies, resulting in a gene constituted by two divergent paralogous modules. Many present-day proteins show internal repeats of amino acid sequences, generated by gene elongation events; however, gene elongation is still a poorly studied evolutionary molecular mechanism. The most documented case is that of the histidine biosynthetic genes hisA and hisF, which derive from the gene elongation of an ancestral gene half the size of the extant ones. The aim of this work was to experimentally simulate the possible last step of the gene elongation event occurred during hisF gene evolution under selective pressure conditions. Azospirillum brasilense hisF gene, carrying a single nucleotide mutation that generates a stop codon between the two halves of the gene, was used to transform the histidine-auxotrophic Escherichia coli strain FB182 (hisF892). The transformed strain was subjected to selective pressure (i.e., low concentration/absence of histidine in the growth medium) and the obtained mutants were characterized. The restoration of prototrophy was strongly dependent on the time of incubation and on the strength of the selective pressure. The mutations involved the introduced stop codon with a single base substitution and none of the mutants restored the wild-type codon. Possible correlations between the different mutations and i) E. coli codon usage, ii) three-dimensional structures of the mutated HisF proteins, and iii) growth ability of the mutants were investigated. On the contrary, when the experiment was repeated by mutating a more conserved codon, only a synonymous substitution was obtained. Thus, experiments performed in this study allowed to mimic a possible gene elongation event occurred during the evolution of hisF gene, evidencing the ability of bacterial cells to modify their genome in short times under selective conditions.


Asunto(s)
Escherichia coli , Histidina , Secuencia de Bases , Histidina/genética , Codón de Terminación , Escherichia coli/genética , Genes Bacterianos
4.
Genes (Basel) ; 14(4)2023 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-37107707

RESUMEN

Operons represent one of the leading strategies of gene organization in prokaryotes, having a crucial influence on the regulation of gene expression and on bacterial chromosome organization. However, there is no consensus yet on why, how, and when operons are formed and conserved, and many different theories have been proposed. Histidine biosynthesis is a highly studied metabolic pathway, and many of the models suggested to explain operons origin and evolution can be applied to the histidine pathway, making this route an attractive model for the study of operon evolution. Indeed, the organization of his genes in operons can be due to a progressive clustering of biosynthetic genes during evolution, coupled with a horizontal transfer of these gene clusters. The necessity of physical interactions among the His enzymes could also have had a role in favoring gene closeness, of particular importance in extreme environmental conditions. In addition, the presence in this pathway of paralogous genes, heterodimeric enzymes and complex regulatory networks also support other operon evolution hypotheses. It is possible that histidine biosynthesis, and in general all bacterial operons, may result from a mixture of several models, being shaped by different forces and mechanisms during evolution.


Asunto(s)
Evolución Molecular , Histidina , Histidina/genética , Operón/genética , Bacterias/genética , Familia de Multigenes
5.
Int J Mol Sci ; 24(5)2023 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-36902273

RESUMEN

Medicinal plants play an important role in the discovery of new bioactive compounds with antimicrobial activity, thanks to their pharmacological properties. However, members of their microbiota can also synthesize bioactive molecules. Among these, strains belonging to the genera Arthrobacter are commonly found associated with the plant's microenvironments, showing plant growth-promoting (PGP) activity and bioremediation properties. However, their role as antimicrobial secondary metabolite producers has not been fully explored. The aim of this work was to characterize the Arthrobacter sp. OVS8 endophytic strain, isolated from the medicinal plant Origanum vulgare L., from molecular and phenotypic viewpoints to evaluate its adaptation and influence on the plant internal microenvironments and its potential as a producer of antibacterial volatile molecules (VOCs). Results obtained from the phenotypic and genomic characterization highlight its ability to produce volatile antimicrobials effective against multidrug-resistant (MDR) human pathogens and its putative PGP role as a producer of siderophores and degrader of organic and inorganic pollutants. The outcomes presented in this work identify Arthrobacter sp. OVS8 as an excellent starting point toward the exploitation of bacterial endophytes as antibiotics sources.


Asunto(s)
Arthrobacter , Aceites Volátiles , Origanum , Plantas Medicinales , Humanos , Aceites Volátiles/farmacología , Plantas Medicinales/microbiología , Antibacterianos/farmacología , Endófitos/metabolismo , Genómica
6.
Microorganisms ; 11(1)2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36677507

RESUMEN

The propagation of foreign DNA in Escherichia coli is central to molecular biology. Recent advances have dramatically expanded the ability to engineer (bacterial) cells; however, most of these techniques remain time-consuming. The aim of the present work was to explore the possibility to use the cloning-free genome editing (CFGE) approach, proposed by Döhlemann and coworkers (2016), for E. coli genetics, and to deepen the knowledge about the homologous recombination mechanism. The E. coli auxotrophic mutant strains FB182 (hisF892) and FB181 (hisI903) were transformed with the circularized wild-type E. coli (i) hisF gene and hisF gene fragments of decreasing length, and (ii) hisIE gene, respectively. His+ clones were selected based on their ability to grow in the absence of histidine, and their hisF/hisIE gene sequences were characterized. CFGE method allowed the recombination of wild-type his genes (or fragments of them) within the mutated chromosomal copy, with a different recombination frequency based on the fragment length, and the generation of clones with a variable number of in tandem his genes copies. Data obtained pave the way to further evolutionary studies concerning the homologous recombination mechanism and the fate of in tandem duplicated genes.

7.
Plants (Basel) ; 11(23)2022 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-36501250

RESUMEN

Phytodepuration occurs in the plant-mediated remediation processes exploited to remove pollutants from wastewater, and Phragmites australis is one of the most used plants. This goal is achieved using constructed wetlands (CW), which are engineered systems designed to mimic the natural processes of pollutants removal. The aim of this work was to characterize the bacterial communities associated to P. australis, soils, and permeates of the CW of Calice (Prato, Italy), to evaluate the possible effect of wastewaters on the CW bacterial communities, through a next-generation sequencing-based approach. A total of 122 samples were collected from different tissues of P. australis (i.e., roots, aerial parts, and stem), soil (i.e., rhizospheric and bulk soil), and permeates, and analyzed. All samples were collected during five sampling campaigns, with the first one performed before the activation of the plant. Obtained results highlighted a specific microbiota of P. australis, conserved among the different plant tissues and during time, showing a lower alpha diversity than the other samples and not influenced by the more complex and variable environmental (soils and permeates) bacterial communities. These data suggest that P. australis is able to select and maintain a defined microbiota, a capacity that could allow the plant to survive in hostile environments, such as that of CW.

8.
Sci Rep ; 12(1): 16651, 2022 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-36198712

RESUMEN

Membrane vesicles (MVs) are spherical particles with nanoscale dimensions and characterized by the presence of diverse cargos, such as nucleic acids, proteins, lipids, and cellular metabolites. Many examples of (micro)organisms producing MVs are reported in literature. Among them, bacterial MVs are of particular interest because they are now considered as the fourth mechanism of horizontal gene transfer. Streptomyces bacteria are well-known for their ecological roles and ability to synthesize bioactive compounds, with Streptomyces coelicolor being the model organism. It was previously demonstrated that it can produce distinct populations of MVs characterized by different protein and metabolite cargos. In this work we demonstrated for the first time that MVs of S. coelicolor carry both DNA and RNA and that their DNA content represents the entire chromosome of the bacterium. These findings suggest that MV DNA could have a role in the evolution of Streptomyces genomes and that MVs could be exploited in new strain engineering strategies.


Asunto(s)
Ácidos Nucleicos , Streptomyces coelicolor , Bacterias/genética , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Regulación Bacteriana de la Expresión Génica , Lípidos , Ácidos Nucleicos/metabolismo , ARN/metabolismo , Streptomyces coelicolor/genética , Streptomyces coelicolor/metabolismo
9.
Microorganisms ; 10(10)2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36296360

RESUMEN

Seed-associated microbiota are believed to play a crucial role in seed germination, seedling establishment, and plant growth and fitness stimulation, due to the vertical transmission of a core microbiota from seeds to the next generations. It might be hypothesized that medicinal and aromatic plants could use the seeds as vectors to vertically transfer beneficial endophytes, providing plants with metabolic pathways that could influence phytochemicals production. Here, we investigated the localization, the structure and the composition of the bacterial endophytic population that resides in Origanum heracleoticum L. seeds. Endocellular bacteria, surrounded by a wall, were localized close to the aleurone layer when using light and transmission electron microscopy. From surface-sterilized seeds, cultivable endophytes were isolated and characterized through RAPD analysis and 16S RNA gene sequencing, which revealed the existence of a high degree of biodiversity at the strain level and the predominance of the genus Pseudomonas. Most of the isolates grew in the presence of six selected antibiotics and were able to inhibit the growth of clinical and environmental strains that belong to the Burkholderia cepacia complex. The endophytes production of antimicrobial compounds could suggest their involvement in plant secondary metabolites production and might pave the way to endophytes exploitation in the pharmaceutical field.

10.
Microorganisms ; 10(7)2022 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-35888993

RESUMEN

Although proto-evolutionary ideas date back to the time of the ancient Greeks, the idea that organisms evolve was not considered a basic element of scientific knowledge until Charles Darwin published his "On the Origin of Species" in 1859 [...].

11.
Microorganisms ; 10(7)2022 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-35889143

RESUMEN

Medicinal aromatic plants' essential oils (EOs) are mixtures of volatile compounds showing antimicrobial activity, which could be exploited to face the emerging problem of multi-drug resistance. Their chemical composition can depend on the interactions between the plant and its endophytic microbiota, which is known to synthesize volatile organic compounds (VOCs). However, it is still not clear whether those volatile metabolites can contribute to the composition of the aroma profile of plants' EOs. The aims of this study were to characterize medicinal plant O. vulgare ssp. vulgare bacterial endophyte VOCs, evaluating their ability to antagonize the growth of opportunistic human pathogens belonging to the Burkholderia cepacia complex (Bcc) and compare them with O. vulgare EO composition. Many of the tested endophytic strains showed (i) a bactericidal and/or bacteriostatic activity against most of Bcc strains and (ii) the production of VOCs with widely recognized antimicrobial properties, such as dimethyl disulfide, dimethyl trisulfide, and monoterpenes. Moreover, these monoterpenes were also detected in the EOs extracted from the same O. vulgare plants from which endophytes were isolated. Obtained results suggest that endophytes could also play a role in the antibacterial properties of O. vulgare ssp. vulgare and, potentially, in determining its aromatic composition.

12.
Microorganisms ; 10(5)2022 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-35630363

RESUMEN

Multidrug-resistant pathogens represent a serious threat to human health. The inefficacy of traditional antibiotic drugs could be surmounted through the exploitation of natural bioactive compounds of which medicinal plants are a great reservoir. The finding that bacteria living inside plant tissues, (i.e., the endophytic bacterial microbiome) can influence the synthesis of the aforementioned compounds leads to the necessity of unraveling the mechanisms involved in the determination of this symbiotic relationship. Here, we report the genome sequence of four endophytic bacterial strains isolated from the medicinal plant Origanum vulgare L. and able to antagonize the growth of opportunistic pathogens of cystic fibrosis patients. The in silico analysis revealed the presence of gene clusters involved in the production of antimicrobial compounds, such as paeninodin, paenilarvins, polymyxin, and paenicidin A. Endophytes' adaptation to the plant microenvironment was evaluated through the analysis of the presence of antibiotic resistance genes in the four genomes. The diesel fuel degrading potential was also tested. Strains grew in minimum media supplemented with diesel fuel, but no n-alkanes degradation genes were found in their genomes, suggesting that diesel fuel degradation might occur through other steps involving enzymes catalyzing the oxidation of aromatic compounds.

13.
Microorganisms ; 10(4)2022 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-35456744

RESUMEN

Microorganisms possess the potential to adapt to fluctuations in environmental parameters, and their evolution is driven by the continuous generation of mutations. The reversion of auxotrophic mutations has been widely studied; however, little is known about the reversion of frameshift mutations resulting in amino acid auxotrophy and on the structure and functioning of the protein encoded by the revertant mutated gene. The aims of this work were to analyze the appearance of reverse mutations over time and under different selective pressures and to investigate revertant enzymes' three-dimensional structures and their correlation with a different growth ability. Escherichia coli FB182 strain, carrying the hisF892 single nucleotide deletion resulting in histidine auxotrophy, was subjected to different selective pressures, and revertant mutants were isolated and characterized. The obtained results allowed us to identify different indels of different lengths located in different positions in the hisF gene, and relations with the incubation time and the selective pressure applied were observed. Moreover, the structure of the different mutant proteins was consistent with the respective revertant ability to grow in absence of histidine, highlighting a correlation between the mutations and the catalytic activity of the mutated HisF enzyme.

14.
Microorganisms ; 9(7)2021 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-34361875

RESUMEN

One of the most studied metabolic routes is the biosynthesis of histidine, especially in enterobacteria where a single compact operon composed of eight adjacent genes encodes the complete set of biosynthetic enzymes. It is still not clear how his genes were organized in the genome of the last universal common ancestor community. The aim of this work was to analyze the structure, organization, phylogenetic distribution, and degree of horizontal gene transfer (HGT) of his genes in the Bacteroidota-Rhodothermota-Balneolota-Chlorobiota superphylum, a group of phylogenetically close bacteria with different surviving strategies. The analysis of the large variety of his gene structures and organizations revealed different scenarios with genes organized in more or less compact-heterogeneous or homogeneous-operons, in suboperons, or in regulons. The organization of his genes in the extant members of the superphylum suggests that in the common ancestor of this group, genes were scattered throughout the chromosome and that different forces have driven the assembly of his genes in compact operons. Gene fusion events and/or paralog formation, HGT of single genes or entire operons between strains of the same or different taxonomic groups, and other molecular rearrangements shaped the his gene structure in this superphylum.

15.
Biology (Basel) ; 10(2)2021 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-33668574

RESUMEN

This study aimed to characterise the gut microbiome composition of European hares (Lepus europaeus) and its potential changes after a short-term diet modification. The high sensitivity of European hare to habitat changes makes this species a good model to analyse possible alterations in gut microbiome after the introduction of additional nourishment into the diet. In total, 20 pairs were chosen for the experiments; 10 pairs formed the control group and were fed with standard fodder. The other 10 pairs represented the experimental group, whose diet was integrated with apples and carrots. The DNA from fresh faecal pellets collected after 4 days from the start of the experiment was extracted and the V3-V4 hypervariable regions were amplified and sequenced using the Illumina MiSeq® platform. The obtained amplicon sequence variants were classified into 735 bacterial genera belonging to 285 families and 36 phyla. The control and the experimental groups appeared to have a homogenous dispersion for the two taxonomic levels analysed with the most abundant phyla represented by Bacteroidetes and Firmicutes. No difference between control and experimental samples was detected, suggesting that the short-term variation in food availability did not alter the hares' gut microbiome. Further research is needed to estimate significant time threshold.

16.
Front Microbiol ; 11: 1652, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32903322

RESUMEN

Improvement of industrial productions through more environment-friendly processes is a hot topic. In particular, land and marine environment pollution is a main concern, considering that recalcitrant compounds can be spread and persist for a long time. In this context, an efficient and cost-effective treatment of wastewater derived from industrial applications is crucial. Phytodepuration has been considered as a possible solution and it is based on the use of plants and their associated microorganisms to remove and/or transform pollutants. In this work we investigated the culturable microbiota of Phragmites australis roots, sampled from the constructed wetlands (CWs) pilot plant in the G.I.D.A. SpA wastewater treatment plant (WWTP) of Calice (Prato, Tuscany, Italy) before and after the CW activation in order to check how the influx of wastewater might affect the resident bacterial community. P. australis specimens were sampled and a panel of 294 culturable bacteria were isolated and characterized. This allowed to identify the dynamics of the microbiota composition triggered by the presence of wastewater. 27 out of 37 bacterial genera detected were exclusively associated to wastewater, and Pseudomonas was constantly the most represented genus. Moreover, isolates were assayed for their resistance against eight different antibiotics and synthetic wastewater (SWW). Data obtained revealed the presence of resistant phenotypes, including multi-drug resistant bacteria, and a general trend regarding the temporal evolution of resistance patterns: indeed, a direct correlation linking the appearance of antibiotic- and SWW-resistance with the time of exposure to wastewater was observed. In particular, nine isolates showed an interesting behavior since their growth was positively affected by the highest concentrations of SWW. Noteworthy, this study is among the few investigating the P. australis microbiota prior to the plant activation.

17.
Microbiol Res ; 240: 126555, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32673985

RESUMEN

Histidine biosynthesis is an ancestral pathway that was assembled before the appearance of the Last Universal Common Ancestor; afterwards, it remained unaltered in all the extant histidine-synthesizing (micro)organisms. It is a metabolic cross-road interconnecting histidine biosynthesis to nitrogen metabolism and the de novo synthesis of purines. This interconnection is due to the reaction catalyzed by the products of hisH and hisF genes. The latter gene is an excellent model to study which trajectories have been followed by primordial cells to build the first metabolic routes, since its evolution is the result of different molecular rearrangement events, i.e. gene duplication, gene fusion, gene elongation, and domain shuffling. Additionally, this review summarizes data concerning the involvement of hisF and its product in other different cellular processes, revealing that HisF very likely plays a role also in cell division control and involvement in virulence and nodule development in different bacteria. From the metabolic viewpoint, these results suggest that HisF plays a central role in cellular metabolism, highlighting the interconnections of different metabolic pathways.


Asunto(s)
Bacterias/genética , Bacterias/metabolismo , Genes Bacterianos/genética , Histidina/biosíntesis , Histidina/genética , Aminohidrolasas , Evolución Molecular , Duplicación de Gen , Fusión Génica , Redes y Vías Metabólicas/genética , Virulencia
18.
FEMS Microbiol Lett ; 367(14)2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32614412

RESUMEN

Histidine biosynthesis is one of the most characterized metabolic routes for its antiquity and its central role in cellular metabolism; indeed, it represents a cross-road between nitrogen metabolism and de novo synthesis of purines. This interconnection is due to the activity of imidazole glycerol phosphate synthase, a heterodimeric enzyme constituted by the products of two his genes, hisH and hisF, encoding a glutamine amidotransferase and a cyclase, respectively. Despite their interaction was suggested by several in vitro experiments, their in vivo complex formation has not been demonstrated. On the contrary, the analysis of the entire Escherichia coli interactome performed using the yeast two hybrid system did not suggest the in vivo interaction of the two IGP synthase subunits. The aim of this study was to demonstrate the interaction of the two proteins using the Bacterial Adenylate Cyclase Two-Hybrid (BACTH) system. Data obtained demonstrated the in vivo interaction occurring between the proteins encoded by the E. coli hisH and hisF genes; this finding might also open the way to pharmaceutical applications through the design of selective drugs toward this enzyme.


Asunto(s)
Aminohidrolasas/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Secuencia de Aminoácidos , Aminohidrolasas/química , Aminohidrolasas/genética , Escherichia coli/química , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Histidina/metabolismo , Unión Proteica , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Técnicas del Sistema de Dos Híbridos
19.
Microorganisms ; 8(5)2020 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-32414216

RESUMEN

Gene elongation is a molecular mechanism consisting of an in-tandem duplication of a gene and divergence and fusion of the two copies, resulting in a gene constituted by two divergent paralogous modules. The aim of this work was to evaluate the importance of gene elongation in the evolution of histidine biosynthetic genes and to propose a possible evolutionary model for some of them. Concerning the genes hisA and hisF, which code for two homologous (ß/α)8-barrels, it has been proposed that the two extant genes could be the result of a cascade of gene elongation/domain shuffling events starting from an ancestor gene coding for just one (ß/α) module. A gene elongation event has also been proposed for the evolution of hisB and hisD; structural analyses revealed the possibility of an early elongation event, resulting in the repetition of modules. Furthermore, it is quite possible that the gene elongations responsible for the evolution of the four proteins occurred before the earliest phylogenetic divergence. In conclusion, gene elongation events seem to have played a crucial role in the evolution of the histidine biosynthetic pathway, and they may have shaped the structures of many genes during the first steps of their evolution.

20.
Front Microbiol ; 11: 862, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32457726

RESUMEN

The insurgence of antibiotic resistance and emergence of multidrug-resistant (MDR) pathogens prioritize research to discover new antimicrobials. In this context, medicinal plants produce bioactive compounds of pharmacological interest: some extracts have antimicrobial properties that can contrast different pathogens. For such a purpose, Origanum vulgare L. (Lamiaceae family) is a medicinal aromatic plant, whose essential oil (EO) is recognized for its antiseptic, antimicrobial and antiviral activities. The cultivable bacteria from different compartments (i.e., flower, leaf, stem and soil) were isolated in order to: (i) characterize the bacterial microbiota associated to the plant, determining the forces responsible for the structuring of its composition (by evaluation of cross inhibition); (ii) investigate if bacterial endophytes demonstrate antimicrobial activities against human pathogens. A pool of plants belonging to O. vulgare species was collected and the specimen chemotype was defined by hydrodistillation of its essential oil. The isolation of plant associated bacteria was performed from the four compartments. Microbiota was further characterized through a culture-independent approach and next-generation sequencing analysis, as well. Isolates were molecularly typed by Random Amplified Polymorphic DNA (RAPD) profiling and taxonomically assigned by 16S rRNA gene sequencing. Antibiotic resistance profiles of isolates and pairwise cross-inhibition of isolates on agar plates (i.e., antagonistic interactions) were also assessed. High level of diversity of bacterial isolates was detected at both genus and strain level in all different compartments. Most strains were tolerant against common antibiotics; moreover, they produced antagonistic patterns of interactions mainly with strains from different compartments with respect to that of original isolation. Strains that exhibited high inhibitory properties were further tested against human pathogens, revealing a strong capacity to inhibit the growth of strains resistant to several antibiotics. In conclusion, this study regarded the characterization of O. vulgare L. chemotype and of the bacterial communities associated to this medicinal plant, also allowing the evaluation of antibiotic resistance and antagonistic interactions. This study provided the bases for further analyses on the possible involvement of endophytic bacteria in the production of antimicrobial molecules that could have an important role in clinical and therapeutic applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...