Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Asunto principal
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38934118

RESUMEN

CO2 is a major component of the icy mantles surrounding dust grains in planet and star formation regions. Understanding its photodesorption is crucial for explaining gas phase abundances in the coldest environments of the interstellar medium irradiated by vacuum-UV (VUV) photons. Photodesorption yields determined experimentally from CO2 samples grown at low temperatures (T = 15 K) have been found to be very sensitive to experimental methods and conditions. Several mechanisms have been suggested for explaining the desorption of CO2, O2 and CO from CO2 ices. In the present study, the cross-sections characterizing the dynamics of photodesorption as a function of photon fluence (determined from released molecules in the gas phase) and of ice composition modification (determined in situ in the solid phase) are compared for the first time for different photon flux conditions (from 7.3 × 1012 photon per s cm-2 to 2.2× 1014 photon per s cm-2) using monochromatic synchrotron radiation in the VUV range (on the DESIRS beamline at SOLEIL). This approach reveals that CO and O2 desorptions are decorrelated from that of CO2. CO and O2 photodesorption yields depend on photon flux conditions and can be linked to surface chemistry. In contrast, the photodesorption yield of CO2 is independent of the photon flux conditions and can be linked to bulk ice chemical modification, consistently with indirect desorption induced by an electronic transition (DIET) process.

2.
Phys Rev Lett ; 131(23): 238001, 2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38134796

RESUMEN

Although UV photon-induced CO ice desorption is clearly observed in many cold regions of the Universe as well as in the laboratory, the fundamental question of the mechanisms involved at the molecular scale remains debated. In particular, the exact nature of the involved energy transfers in the indirect desorption pathway highlighted in previous experiments is not explained. Using ab initio molecular dynamics simulations, we explore a new indirect desorption mechanism in which a highly vibrationally excited CO (v=40) within an aggregate of 50 CO molecules triggers the desorption of molecules at the surface. The desorption originates first from a mutual attraction between the excited molecule and the surrounding molecule(s), followed by a cascade of energy transfers, ultimately resulting in the desorption of vibrationally cold CO (∼95% in v=0). The theoretical vibrational distribution, along with the kinetic energy one, which peaks around 25 meV for CO with low rotational levels (v=0, J<7), is in excellent agreement with the results obtained from VUV laser induced desorption (157 nm) of CO (v=0, 1) probed using REMPI.

3.
Dalton Trans ; 51(40): 15571-15578, 2022 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-36169005

RESUMEN

Enantiopure copper(I) chloride complexes bearing a monodentate N-(carbo[6]helicenyl)-NHC ligand have been prepared and characterized experimentally and computationally. Their high stability enables the stereochemistry to be probed by X-ray crystallography and NMR spectroscopy. The resolved enantiomeric complexes emit circularly polarized blue fluorescence with glum ∼1.3 × 10-3 in solution. The photophysical and chiroptical properties of these systems, with their helicene-centred origin, are similar to those of the organic helicene-benzimidazole precursor proligand, although the reverse axial chirality configuration is preferentially observed for the complex compared to the ligand.


Asunto(s)
Cobre , Metano , Bencimidazoles , Cobre/química , Ligandos , Metano/análogos & derivados , Metano/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...