Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 6(3): eaax7467, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31998838

RESUMEN

Our nearest neighbor, Proxima Centauri, hosts a temperate terrestrial planet. We detected in radial velocities evidence of a possible second planet with minimum mass m c sin i c = 5.8 ± 1.9M ⊕ and orbital period P c = 5.21 - 0.22 + 0.26 years. The analysis of photometric data and spectro-scopic activity diagnostics does not explain the signal in terms of a stellar activity cycle, but follow-up is required in the coming years for confirming its planetary origin. We show that the existence of the planet can be ascertained, and its true mass can be determined with high accuracy, by combining Gaia astrometry and radial velocities. Proxima c could become a prime target for follow-up and characterization with next-generation direct imaging instrumentation due to the large maximum angular separation of ~1 arc second from the parent star. The candidate planet represents a challenge for the models of super-Earth formation and evolution.

2.
Phys Rev E Stat Nonlin Soft Matter Phys ; 86(1 Pt 2): 016313, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23005531

RESUMEN

We study spontaneous breakdown of chiral symmetry during the nonlinear evolution of the Tayler instability. We start with an initial steady state of zero helicity. Within linearized perturbation calculations, helical perturbations of this initial state have the same growth rate for either sign of helicity. Direct numerical simulations (DNS) of the fully nonlinear equations, however, show that an infinitesimal excess of one sign of helicity in the initial perturbation gives rise to a saturated helical state. We further show that this symmetry breaking can be described by weakly nonlinear finite-amplitude equations with undetermined coefficients which can be deduced solely from symmetry consideration. By fitting solutions of the amplitude equations to data from DNS, we further determine the coefficients of the amplitude equations.


Asunto(s)
Algoritmos , Modelos Teóricos , Dinámicas no Lineales , Simulación por Computador
3.
Phys Rev E Stat Nonlin Soft Matter Phys ; 84(4 Pt 2): 046321, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22181275

RESUMEN

Certain aspects of the mean-field theory of turbulent passive scalar transport and of mean-field electrodynamics are considered with particular emphasis on aspects of compressible fluids. It is demonstrated that the total mean-field diffusivity for passive scalar transport in a compressible flow may well be smaller than the molecular diffusivity. This is in full analogy to an old finding regarding the magnetic mean-field diffusivity in an electrically conducting turbulently moving compressible fluid. These phenomena occur if the irrotational part of the motion dominates the vortical part, the Péclet or magnetic Reynolds number is not too large, and, in addition, the variation of the flow pattern is slow. For both the passive scalar and the magnetic cases several further analytical results on mean-field diffusivities and related quantities found within the second-order correlation approximation are presented, as well as numerical results obtained by the test-field method, which applies independently of this approximation. Particular attention is paid to nonlocal and noninstantaneous connections between the turbulence-caused terms and the mean fields. Two examples of irrotational flows, in which interesting phenomena in the above sense occur, are investigated in detail. In particular, it is demonstrated that the decay of a mean scalar in a compressible fluid under the influence of these flows can be much slower than without any flow, and can be strongly influenced by the so-called memory effect, that is, the fact that the relevant mean-field coefficients depend on the decay rates themselves.

4.
Phys Rev E Stat Nonlin Soft Matter Phys ; 81(3 Pt 2): 036401, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20365876

RESUMEN

The resistive decay of chains of three interlocked magnetic flux rings is considered. Depending on the relative orientation of the magnetic field in the three rings, the late-time decay can be either fast or slow. Thus, the qualitative degree of tangledness is less important than the actual value of the linking number or, equivalently, the net magnetic helicity. Our results do not suggest that invariants of higher order than that of the magnetic helicity need to be considered to characterize the decay of the field.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...