Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-39024407

RESUMEN

This cross-sectional study aims to elucidate the neural mechanisms underlying the control of knee extension forces in individuals with anterior cruciate ligament reconstructions (ACLR). Eleven soccer players with ACLR and nine control players performed unilateral isometric knee extensions at 10% and 30% of their maximum voluntary force (MVF). Simultaneous recordings of high-density surface electromyography (HDEMG) and force output were conducted for each lower limb, and HDEMG data from the vastus lateralis (VL) and vastus medialis (VM) muscles were decomposed into individual motor unit spike trains. Force steadiness was estimated using the coefficient of variation of force. An intramuscular coherence analysis was adopted to estimate the common synaptic input (CSI) converging to each muscle. A factor analysis was applied to investigate the neural strategies underlying the control of synergistic motor neuron clusters, referred to as motor unit modes. Force steadiness was similar between lower limbs. However, motor neurons innervating the VL on the reconstructed side received a lower proportion of CSI at low-frequency bandwidths (< 5 Hz) in comparison to unaffected lower limbs (P < 0.01). Furthermore, the reconstructed side demonstrated a higher proportion of motor units associated with the neural input common to the synergistic muscle, as compared to unaffected lower limbs (P < 0.01). These findings indicate that the VL muscle of reconstructed lower limbs contribute marginally to force steadiness and that a plastic rearrangement in synergistic clusters of motor units involved in the control of knee extension forces is evident following ACLR.

2.
eNeuro ; 11(7)2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38866498

RESUMEN

The acquisition of a motor skill involves adaptations of spinal and supraspinal pathways to alpha motoneurons. In this study, we estimated the shared synaptic contributions of these pathways to understand the neural mechanisms underlying the short-term acquisition of a new force-matching task. High-density surface electromyography (HDsEMG) was acquired from the first dorsal interosseous (FDI; 7 males and 6 females) and tibialis anterior (TA; 7 males and 4 females) during 15 trials of an isometric force-matching task. For two selected trials (pre- and post-skill acquisition), we decomposed the HDsEMG into motor unit spike trains, tracked motor units between trials, and calculated the mean discharge rate and the coefficient of variation of interspike interval (COVISI). We also quantified the post/pre ratio of motor units' coherence within delta, alpha, and beta bands. Force-matching improvements were accompanied by increased mean discharge rate and decreased COVISI for both muscles. Moreover, the area under the curve within alpha band decreased by ∼22% (TA) and ∼13% (FDI), with no delta or beta bands changes. These reductions correlated significantly with increased coupling between force/neural drive and target oscillations. These results suggest that short-term force-matching skill acquisition is mediated by attenuation of physiological tremor oscillations in the shared synaptic inputs. Supported by simulations, a plausible mechanism for alpha band reductions may involve spinal interneuron phase-cancelling descending oscillations. Therefore, during skill learning, the central nervous system acts as a matched filter, adjusting synaptic weights of shared inputs to suppress neural components unrelated to the specific task.


Asunto(s)
Electromiografía , Aprendizaje , Neuronas Motoras , Destreza Motora , Músculo Esquelético , Humanos , Masculino , Femenino , Neuronas Motoras/fisiología , Aprendizaje/fisiología , Adulto , Destreza Motora/fisiología , Adulto Joven , Músculo Esquelético/fisiología , Músculo Esquelético/fisiopatología , Temblor/fisiopatología , Médula Espinal/fisiología , Médula Espinal/fisiopatología
3.
J Appl Physiol (1985) ; 136(6): 1546-1558, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38695356

RESUMEN

Contraction intensity is a key factor determining the development of muscle fatigue, and it has been shown to induce distinct changes along the motor pathway. The role of cortical and spinal inputs that regulate motor unit (MU) behavior during fatiguing contractions is poorly understood. We studied the cortical, spinal, and neuromuscular response to sustained fatiguing isometric tasks performed at 20% and 70% of the maximum isometric voluntary contraction (MVC), together with MU behavior of knee extensors in healthy active males. Neuromuscular function was assessed before and after performance of both tasks. Cortical and spinal responses during exercise were measured via stimulation of the motor cortex and spinal cord. High-density electromyography was used to record individual MUs from the vastus lateralis (VL). Exercise at 70%MVC induced greater decline in MVC (P = 0.023) and potentiated twitch force compared with 20%MVC (P < 0.001), with no difference in voluntary activation (P = 0.514). Throughout exercise, corticospinal responses were greater during the 20%MVC task (P < 0.001), and spinal responses increased over time in both tasks (P ≤ 0.042). MU discharge rate increased similarly after both tasks (P ≤ 0.043), whereas recruitment and derecruitment thresholds were unaffected (P ≥ 0.295). These results suggest that increased excitability of cortical and spinal inputs might be responsible for the increase in MU discharge rate. The increase in evoked responses together with the higher MU discharge rate might be required to compensate for peripheral adjustments to sustain fatiguing contractions at different intensities.NEW & NOTEWORTHY Changes in central nervous system and muscle function occur in response to fatiguing exercise and are specific to exercise intensity. This study measured corticospinal, neuromuscular, and motor unit behavior to fatiguing isometric tasks performed at different intensities. Both tasks increased corticospinal excitability and motor unit discharge rate. Our findings suggest that these acute adjustments are required to compensate for the exercise-induced decrements in neuromuscular function caused by fatiguing tasks.


Asunto(s)
Electromiografía , Contracción Isométrica , Rodilla , Corteza Motora , Fatiga Muscular , Humanos , Masculino , Fatiga Muscular/fisiología , Contracción Isométrica/fisiología , Adulto , Rodilla/fisiología , Corteza Motora/fisiología , Electromiografía/métodos , Adulto Joven , Médula Espinal/fisiología , Neuronas Motoras/fisiología , Músculo Esquelético/fisiología , Ejercicio Físico/fisiología , Músculo Cuádriceps/fisiología
4.
J Physiol ; 602(12): 2679-2688, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38686581

RESUMEN

After exposure of the human body to resistive exercise, the force-generation capacity of the trained muscles increases significantly. Despite decades of research, the neural and muscular stimuli that initiate these changes in muscle force are not yet fully understood. The study of these adaptations is further complicated by the fact that the changes may be partly specific to the training task. For example, short-term strength training does not always influence the neural drive to muscles during the early phase (<100 ms) of force development in rapid isometric contractions. Here we discuss some of the studies that have investigated neuromuscular adaptations underlying changes in maximal force and rate of force development produced by different strength training interventions, with a focus on changes observed at the level of spinal motor neurons. We discuss the different motor unit adjustments needed to increase force or speed, and the specificity of some of the adaptations elicited by differences in the training tasks.


Asunto(s)
Adaptación Fisiológica , Neuronas Motoras , Músculo Esquelético , Entrenamiento de Fuerza , Humanos , Adaptación Fisiológica/fisiología , Entrenamiento de Fuerza/métodos , Neuronas Motoras/fisiología , Músculo Esquelético/fisiología , Ejercicio Físico/fisiología
5.
Brain ; 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38501612

RESUMEN

The paralysis of the muscles controlling the hand dramatically limits the quality of life of individuals living with spinal cord injury (SCI). Here, with a non-invasive neural interface, we demonstrate that eight motor complete SCI individuals (C5-C6) are still able to task-modulate in real-time the activity of populations of spinal motor neurons with residual neural pathways. In all SCI participants tested, we identified groups of motor units under voluntary control that encoded various hand movements. The motor unit discharges were mapped into more than 10 degrees of freedom, ranging from grasping to individual hand-digit flexion and extension. We then mapped the neural dynamics into a real-time controlled virtual hand. The SCI participants were able to match the cue hand posture by proportionally controlling four degrees of freedom (opening and closing the hand and index flexion/extension). These results demonstrate that wearable muscle sensors provide access to spared motor neurons that are fully under voluntary control in complete cervical SCI individuals. This non-invasive neural interface allows the investigation of motor neuron changes after the injury and has the potential to promote movement restoration when integrated with assistive devices.

6.
J Neural Eng ; 21(2)2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38525843

RESUMEN

Objective.Surface electromyography (sEMG) is a non-invasive technique that records the electrical signals generated by muscles through electrodes placed on the skin. sEMG is the state-of-the-art method used to control active upper limb prostheses because of the association between its amplitude and the neural drive sent from the spinal cord to muscles. However, accurately estimating the kinematics of a freely moving human hand using sEMG from extrinsic hand muscles remains a challenge. Deep learning has been recently successfully applied to this problem by mapping raw sEMG signals into kinematics. Nonetheless, the optimal number of EMG signals and the type of pre-processing that would maximize performance have not been investigated yet.Approach.Here, we analyze the impact of these factors on the accuracy in kinematics estimates. For this purpose, we processed monopolar sEMG signals that were originally recorded from 320 electrodes over the forearm muscles of 13 subjects. We used a previously published deep learning method that can map the kinematics of the human hand with real-time resolution.Main results.While myocontrol algorithms essentially use the temporal envelope of the EMG signal as the only EMG feature, we show that our approach requires the full bandwidth of the signal in the temporal domain for accurate estimates. Spatial filtering however, had a smaller impact and low-order spatial filters may be suitable. Moreover, reducing the number of channels by ablation resulted in large performance losses. The highest accuracy was reached with the highest number of available sensors (n = 320). Importantly and unexpected, our results suggest that increasing the number of channels above those used in this study may further enhance the accuracy in predicting the kinematics of the human hand.Significance.We conclude that full bandwidth high-density EMG systems of hundreds of electrodes are needed for accurate kinematic estimates of the human hand.


Asunto(s)
Mano , Músculo Esquelético , Humanos , Fenómenos Biomecánicos , Mano/fisiología , Músculo Esquelético/fisiología , Electromiografía/métodos , Algoritmos
7.
J Physiol ; 602(7): 1385-1404, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38513002

RESUMEN

The purpose of our study was to investigate the influence of a stretch intervention on the common modulation of discharge rate among motor units in the calf muscles during a submaximal isometric contraction. The current report comprises a computational analysis of a motor unit dataset that we published previously (Mazzo et al., 2021). Motor unit activity was recorded from the three main plantar flexor muscles while participants performed an isometric contraction at 10% of the maximal voluntary contraction force before and after each of two interventions. The interventions were a control task (standing balance) and static stretching of the plantar flexor muscles. A factorization analysis on the smoothed discharge rates of the motor units from all three muscles yielded three modes that were independent of the individual muscles. The composition of the modes was not changed by the standing-balance task, whereas the stretching exercise reduced the average correlation in the second mode and increased it in the third mode. A centroid analysis on the correlation values showed that most motor units were associated with two or three modes, which were presumed to indicate shared synaptic inputs. The percentage of motor units adjacent to the seven centroids changed after both interventions: Control intervention, mode 1 decreased and the shared mode 1 + 2 increased; stretch intervention, shared modes either decreased (1 + 2) or increased (1 + 3). These findings indicate that the neuromuscular adjustments during both interventions were sufficient to change the motor unit modes when the same task was performed after each intervention. KEY POINTS: Based on covariation of the discharge rates of motor units in the calf muscles during a submaximal isometric contraction, factor analysis was used to assign the correlated discharge trains to three motor unit modes. The motor unit modes were determined from the combined set of all identified motor units across the three muscles before and after each participant performed a control and a stretch intervention. The composition of the motor unit modes changed after the stretching exercise, but not after the control task (standing balance). A centroid analysis on the distribution of correlation values found that most motor units were associated with a shared centroid and this distribution, presumably reflecting shared synaptic input, changed after both interventions. Our results demonstrate how the distribution of multiple common synaptic inputs to the motor neurons innervating the plantar flexor muscles changes after a brief series of stretches.


Asunto(s)
Contracción Isométrica , Músculo Esquelético , Humanos , Contracción Isométrica/fisiología , Electromiografía/métodos , Músculo Esquelético/fisiología , Pierna/fisiología , Neuronas Motoras/fisiología , Contracción Muscular/fisiología
8.
J Physiol ; 602(8): 1759-1774, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38502567

RESUMEN

5-HT2 receptors on motoneurones play a critical role in facilitating persistent inward currents (PICs). Although facilitation of PICs can enhance self-sustained firing after periods of excitation, the relationship between 5-HT2 receptor activity and self-sustained firing in human motor units (MUs) has not been resolved. MU activity was assessed from the tibialis anterior of 10 healthy adults (24.9 ± 2.8 years) during two contraction protocols. Both protocols featured steady-state isometric contractions with constant descending drive to the motoneurone pool. However, one protocol also included an additional phase of superimposed descending drive. Adding and then removing descending drive in the middle of steady-state contractions altered MU firing behaviour across the motor pool, where newly recruited units in the superimposed phase were unable to switch off (P = 0.0002), and units recruited prior to additional descending drive reduced their discharge rates (P < 0.0001, difference in estimated marginal means (∆) = 2.24 pulses/s). The 5-HT2 receptor antagonist, cyproheptadine, was then administered to determine whether changes in MU firing were mediated by serotonergic mechanisms. 5-HT2 receptor antagonism caused reductions in MU discharge rate (P < 0.001, ∆ = 1.65 pulses/s), recruitment threshold (P = 0.00112, ∆ = 1.09% maximal voluntary contraction) and self-sustained firing duration (P < 0.0001, ∆ = 1.77s) after the additional descending drive was removed in the middle of the steady-state contraction. These findings indicate that serotonergic neuromodulation plays a key role in facilitating discharge and self-sustained firing of human motoneurones, where adaptive changes in MU recruitment must occur to meet the demands of the contraction. KEY POINTS: Animal and cellular preparations indicate that somato-dendritic 5-HT2 receptors regulate the intrinsic excitability of motoneurones. 5-HT2 receptor antagonism reduces estimates of persistent inward currents in motoneurones, which contribute to self-sustained firing when synaptic inputs are reduced or removed. This human study employed a contraction task that slowly increased (and then removed) the additional descending drive in the middle of a steady-state contraction where marked self-sustained firing occurred when the descending drive was removed. 5-HT2 receptor antagonism caused widespread reductions in motor unit (MU) discharge rates during contractions, which was accompanied by reduced recruitment threshold and attenuation of self-sustained firing duration after the removal of the additional descending drive to motoneurones. These findings support the role that serotonergic neuromodulation is a key facilitator of MU discharge and self-sustained firing of human motoneurones, where adaptative changes in MU recruitment must occur to meet the demands of the contraction.


Asunto(s)
Receptores de Serotonina 5-HT2 , Serotonina , Adulto , Humanos , Serotonina/farmacología , Músculo Esquelético/fisiología , Contracción Isométrica/fisiología , Neuronas Motoras/fisiología , Electromiografía/métodos , Contracción Muscular/fisiología , Reclutamiento Neurofisiológico/fisiología
9.
Appl Physiol Nutr Metab ; 49(4): 547-553, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38100752

RESUMEN

Several methods are in use to record and analyze neuronal activation, each with specific advantages and challenges. New developments like the decomposition of high-density surface electromyography (HDsEMG) have enabled novel insights into discharge characteristics noninvasively in laboratory settings but face certain challenges to be applied in sports physiology in a broader scope. Several challenges can be accounted for by methodological considerations, others require further technological developments to allow this technology to be used in more applied settings. This paper aims to describe the developments of surface electromyography and identify the challenges and perspectives of HDsEMG in the context of an application in sports physiology. We further discuss methodological possibilities to overcome some of the challenges to investigate specific research questions and identify areas that require further advancements.


Asunto(s)
Deportes , Electromiografía/métodos , Ejercicio Físico , Músculo Esquelético/fisiología
10.
Braz. dent. j ; 20(2): 162-168, 2009. ilus
Artículo en Inglés | LILACS | ID: lil-524513

RESUMEN

The aim of this study was to compare the peripheral bone damage induced by different cutting systems. Four devices were tested: Er:YAG laser (2.94 mm), Piezosurgery, high-speed drill and low-speed drill. Forty-five bone sections, divided into 9 groups according to different parameters, were taken from pig mandibles within 1 h post mortem. Specimens were fixed in 10 percent buffered formalin, decalcified and cut in thin sections. Four different parameters were analyzed: cut precision, depth of incision, peripheral carbonization and presence of bone fragments. For statistical analysis, the Kruskal-Wallis test was applied to assess equality of sample medians among groups. All sections obtained with the Er:YAG laser showed poor peripheral carbonization. The edges of the incisions were always well-shaped and regular, no melting was observed. Piezosurgery specimens revealed superficial incisions without thermal damage but with irregular edges. The sections obtained by traditional drilling showed poor peripheral carbonization, especially if obtained at lower speed. There was statistically significant differences (p<0.01) among the cutting systems for all analyzed parameters. Er:YAG laser, gave poor peripheral carbonization, and may be considered an effective method in oral bone biopsies and permits to obtain clear and readable tissue specimens.


O objetivo deste estudo foi comparar o dano ósseo periférico produzido por diversos sistemas de corte. Foram avaliados 4 dispositivos: laser Er:YAG (2,94 mm), Piezo-cirurgia, broca em alta rotação e broca em baixa rotação. Para isto, foram utilizadas 45 seções ósseas retiradas de mandíbulas de suínos, até 1 h post-mortem, divididas em 9 grupos de acordo com diversos parâmetros. As amostras foram fixadas em formalina a 10 por cento tamponada, descalcificadas e cortadas em lâminas finas. Foram analisados 4 parâmetros diferentes: a precisão do corte, a profundidade da incisão, a carbonização periférica e presença de fragmentos ósseos. A análise estatística empregou o teste de Kruskal-Wallis para avaliar a similaridade das medianas entre os grupos. Todas as seções feitas com o laser Er:YAG exibiram pouca carbonização. As margens das incisões foram todas bem acabadas e regulares, sem apresentar pontos de fusão. As amostras obtidas por piezo-cirurgia apresentaram incisões superficiais sem danos térmicos, mas com margens irregulares. As seções obtidas pelas brocas convencionais apresentaram pouca carbonização marginal, particularmente as feitas em baixa rotação. Foram observadas diferenças estatisticamente significantes (p<0,01) entre todos os sistemas de corte para cada um dos parâmetros analisados. O laser Er:YAG apresentou pouca carbonização e pode ser considerado como um método eficaz para biópsias de ossos bucais, produzindo amostras de tecido limpas e fáceis de analisar.


Asunto(s)
Animales , Huesos/lesiones , Técnica Odontológica de Alta Velocidad/efectos adversos , Instrumentos Dentales/efectos adversos , Mandíbula/cirugía , Procedimientos Quirúrgicos Orales/efectos adversos , Procedimientos Quirúrgicos Orales/instrumentación , Biopsia/instrumentación , Huesos/cirugía , Quemaduras/etiología , Terapia por Láser/efectos adversos , Láseres de Estado Sólido/efectos adversos , Traumatismos Mandibulares/etiología , Porcinos , Terapia por Ultrasonido/efectos adversos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA