Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 231: 123328, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36681215

RESUMEN

Among biomedical community, great efforts have been realized to develop antibacterial coatings that avoid implant-associated infections. To date, conventional mono-functional antibacterial strategies have not been effective enough for successful long-term implantations. Consequently, researchers have recently focused their attention on novel bifunctional or multifunctional antibacterial coatings, in which two or more antibacterial mechanisms interact synergistically. Thus, in this work different chitosan-based (CHI) hydrogel coatings were created on Ti6Al4V surface using genipin (Ti-CHIGP) and polyethylene glycol (Ti-CHIPEG) crosslinking agents. Hydrogel coatings demonstrated an exceptional in vivo biocompatibility plus a remarkable ability to promote cell proliferation and differentiation. Lastly, hydrogel coatings demonstrated an outstanding bacteria-repelling (17-28 % of S. aureus and 33-43 % of E. coli repelled) and contact killing (186-222 % of S. aureus and 72-83 % of E. coli damaged) ability. Such bifunctional antibacterial activity could be further improved by the controlled release of drugs resulting in powerful multifunctional antibacterial coatings.


Asunto(s)
Quitosano , Quitosano/farmacología , Hidrogeles/farmacología , Staphylococcus aureus , Escherichia coli , Materiales Biocompatibles Revestidos/farmacología , Antibacterianos/farmacología , Titanio/farmacología
2.
Carbohydr Polym ; 301(Pt B): 120366, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36446504

RESUMEN

Today, the treatment of implant-associated infections with conventional mono-functional antibacterial coatings has not been effective enough for a prosperous long-term implantation. Therefore, biomedical industry is making considerable efforts on the development of novel antibacterial coatings with a combination of more than one antibacterial strategies that interact synergistically to reinforce each other. Therefore, in this work hyaluronic acid-based (HA) hydrogel coatings were created on the surface Ti6Al4V biomaterial with 1,4-butanediol diglycidyl ether (Ti-HABDDE) and divinyl sulfone (Ti-HADVS) crosslinking agents. Hydrogel coatings displayed an extraordinary in vivo biocompatibility, a remarkable ability to promote cell proliferation, differentiation and mineralization, and capability to sustainedly release drugs. Finally, HA-based hydrogel coatings demonstrated an outstanding multifunctional antibacterial activity: bacteria-repelling (51-55 % of S. aureus and 27-40 % of E. coli), bacteria-killing (82-119 % of S. aureus and 83-87 % of E. coli) and bactericide release killing (drug-loaded hydrogel coatings, R > 2).


Asunto(s)
Materiales Biocompatibles , Hidrogeles , Antibacterianos/farmacología , Materiales Biocompatibles/farmacología , Escherichia coli , Ácido Hialurónico/farmacología , Hidrogeles/farmacología , Staphylococcus aureus
3.
Biomater Adv ; 139: 212992, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35882141

RESUMEN

Great efforts have been performed on the production of advanced biomaterials with the combination of self-healing and wound healing properties in implant/tissue engineering biomedical area. Inspired by this idea, chitosan (CHI) based hydrogels can be used to treat a less investigated class of harmful chronic wounds: ulcers or pressure ulcers. Thus, CHI was crosslinked with previously synthesized polyethylene glycol diacid (PEG-diacid) to obtain different CHI-PEG hydrogel formulations with high H-bonding tendency resulting in self-repair ability. Here presented results show biocompatible, antibacterial, anti-inflammatory, and self-healing CHI-PEG hydrogels with a promising future in the treatment of ulcerated wounds by a significant improvement in metabolic activity (94.51 ± 4.38 %), collagen and elastin quantities (2.12 ± 0.63 µg collagen and 4.97 ± 0.61 µg elastin per mg dermal tissue) and histological analysis. Furthermore, cefuroxime (CFX), tetracycline (TCN) and amoxicillin (AMX) antibiotics, and acetylsalicylic acid (ASA) anti-inflammatory agent were sustainedly released for enhancing antibacterial and anti-inflammatory activities of hydrogels.


Asunto(s)
Quitosano , Antibacterianos/farmacología , Antiinflamatorios/farmacología , Materiales Biocompatibles , Quitosano/farmacología , Colágeno/farmacología , Elastina , Humanos , Hidrogeles , Úlcera , Cicatrización de Heridas
4.
Gels ; 8(4)2022 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-35448124

RESUMEN

Hyaluronic acid (HA) injectable biomaterials are currently applied in numerous biomedical areas, beyond their use as dermal fillers. However, bacterial infections and painful inflammations are associated with healthcare complications that can appear after injection, restricting their applicability. Fortunately, HA injectable hydrogels can also serve as drug delivery platforms for the controlled release of bioactive agents with a critical role in the control of certain diseases. Accordingly, herein, HA hydrogels were crosslinked with 1 4-butanediol diglycidyl ether (BDDE) loaded with cefuroxime (CFX), tetracycline (TCN), and amoxicillin (AMX) antibiotics and acetylsalicylic acid (ASA) anti-inflammatory agent in order to promote antibacterial and anti-inflammatory responses. The hydrogels were thoroughly characterized and a clear correlation between the crosslinking grade and the hydrogels' physicochemical properties was found after rheology, scanning electron microscopy (SEM), thermogravimetry (TGA), and differential scanning calorimetry (DSC) analyses. The biological safety of the hydrogels, expected due to the lack of BDDE residues observed in 1H-NMR spectroscopy, was also corroborated by an exhaustive biocompatibility test. As expected, the in vitro antibacterial and anti-inflammatory activity of the drug-loaded HA-BDDE hydrogels was confirmed against Staphylococcus aureus by significantly decreasing the pro-inflammatory cytokine levels.

5.
Int J Biol Macromol ; 203: 679-694, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35124016

RESUMEN

Chitosan (CHI) based hydrogels promote wound healing and relieve inflammations and chronic infections. However, in hardly healable ulcers with excessively painful inflammations, anti-inflammatory activity of hydrogels can be enhanced by the sustained release of non-steroidal anti-inflammatory drugs or combining them with antibiotics. Thus, CHI was crosslinked with genipin (GP) to obtain biocompatible hydrogels. Moreover, their antibacterial activity was confirmed against Staphylococcus aureus and Escherichia coli with an almost 100% bacteria reduction and a potential antibacterial efficacy (R > 2). Furthermore, hydrogels effective healing of ulcerated wounds was corroborated by a significant improvement in metabolic activity (95.58 ± 4.40%), collagen and elastin quantities (1.48 ± 0.07 µg collagen and 5.82 ± 0.73 µg elastin per mg dermal tissue) and histological analysis. Finally, the sustained release of acetylsalicylic acid (ASA), cefuroxime (CFX), tetracycline (TCN) and amoxicillin (AMX) were studied, as well as their anti-inflammatory activity. Results confirm the synergistic anti-inflammatory activity by the significant reduction in the amount of pro-inflammatory cytokines when ASA was combined with CFX (5.39 ± 0.81 ng·mL-1 TNF-α), TCN (4.70 ± 0.21 ng·mL-1 TNF-α and 49.06 ± 9.64 ng·mL-1 IL-8), and AMX (2.28 ± 0.36 ng·mL-1 TNF-α, 14.84 ± 5.57 ng·mL-1 IL-8, and total IL-6 removal).


Asunto(s)
Quitosano , Hidrogeles , Antibacterianos/farmacología , Antiinflamatorios/farmacología , Quitosano/farmacología , Hidrogeles/farmacología , Iridoides , Cicatrización de Heridas
6.
Sensors (Basel) ; 23(1)2022 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-36616852

RESUMEN

Low-frequency oscillations (LFO) occur in railway electrification systems due to the incorporation of new trains with switching converters. As a result, the increased harmonic content can cause catenary stability problems under certain conditions. Most of the research published on this topic to date is focused on modelling the event and analysing it using frequency spectrums. However, in recent years, due to the new technologies linked to Big Data (BD) and data mining (DM), a new opportunity to study and detect LFO events by means of machine-learning (ML) methods has emerged. Trains continuously collect data from the most important catenary variables, which offers new resources for analysing this type of event. Therefore, this article presents the design and implementation of a data-driven LFO event detection strategy for AC railway network scenarios. Compared to previous investigations, a new approach to analyse and detect LFO events, based on field data and ML, is presented. To obtain the most appropriate detection approach for the context of this application, on the one hand, this investigation includes a comparison of machine-learning algorithms (support vector machine, logistic regression, random forest, k-nearest neighbours, naïve Bayes) which have been trained with real field data. On the other hand, an analysis of key parameters and features to optimize event detection is also included. Thus, the most significant result of this work is the high metric values of the solution, reaching values above 97% in accuracy and 93% in F-1 score with the random forest algorithm. In addition, the applicability and training of data-driven methods with real field data are demonstrated. This automatic detection strategy can help with speeding up and improving LFO detection tasks that used to be performed manually. Finally, it is worth mentioning that this research has been structured based on the CRISP-DM methodology, established as the de facto approach for industrial DM projects.


Asunto(s)
Algoritmos , Aprendizaje Automático , Teorema de Bayes , Bosques Aleatorios , Minería de Datos , Máquina de Vectores de Soporte
7.
Sensors (Basel) ; 21(12)2021 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-34200893

RESUMEN

The need to manufacture more competitive equipment, together with the emergence of the digital technologies from the so-called Industry 4.0, have changed many paradigms of the industrial sector. Presently, the trend has shifted to massively acquire operational data, which can be processed to extract really valuable information with the help of Machine Learning or Deep Learning techniques. As a result, classical Condition Monitoring methodologies, such as model- and signal-based ones are being overcome by data-driven approaches. Therefore, the current paper provides a review of these data-driven active supervision strategies implemented in electric drives for fault detection and diagnosis (FDD). Hence, first, an overview of the main FDD methods is presented. Then, some basic guidelines to implement the Machine Learning workflow on which most data-driven strategies are based, are explained. In addition, finally, the review of scientific articles related to the topic is provided, together with a discussion which tries to identify the main research gaps and opportunities.


Asunto(s)
Electricidad , Aprendizaje Automático
8.
Mater Sci Eng C Mater Biol Appl ; 125: 112102, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33965111

RESUMEN

Hyaluronic acid (HA) solutions were crosslinked with divinyl sulfone (DVS) and subsequently loaded with antibiotic molecules to obtain biocompatible and antibacterial injectable hydrogels. The crosslinking degree of the hydrogels was modulated by varying the reaction time and the HA:DVS weight ratio. Synthesized HA-DVS hydrogels were characterized by their rheological properties, pore size, swelling capacity and hydrolytic and thermal degradation. Biocompatibility was assessed by measuring pH, osmolality and by in vitro cytotoxic assay. Acetyl salicylic (AAS) loaded hydrogels display anti-inflammatory properties in vitro, whereas cefuroxime (CFX), tetracycline (TCN) and amoxicillin (AMX) loaded hydrogels show in vitro antibacterial activity against Staphylococcus aureus. The combine use of antibiotics and AAS produces a synergic effect that reduces the S. aureus population up to a log10 reduction (R) of 5.55. Overall results show that antibiotic/AAS loaded HA-DVS hydrogels could be effectively used to combat S. aureus infections and to increase the antibacterial activity of antibiotics commonly used against S. aureus.


Asunto(s)
Ácido Hialurónico , Hidrogeles , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Liberación de Fármacos , Ensayo de Materiales , Staphylococcus aureus , Sulfonas
9.
Int J Biol Macromol ; 183: 1222-1235, 2021 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-33984386

RESUMEN

Bacterial contamination in implanted biomedical devices is a critical daily concern. The most used material for permanent implant in biomedical field is Ti6Al4V alloy due to its beneficial mechanical properties and high biocompatibility. Accordingly, in this work different polymeric antibacterial coatings poly(N-vinyl pyrrolidone) (PVP), hyaluronic acid (HA) and chitosan (CHI) were developed and comparatively analysed for Ti6Al4V surface covering. The adhesion of these coatings to Ti6Al4V substrates were carried out after the conjugation of these polymers with the so well-known bioadhesive properties of catechol (CA) anchor group. These surface modifications were characterized by X-ray photoelectronic spectroscopy, contact angle measurements and atomic force microscopy. In addition, the stability of CA-conjugated polymeric coatings was compared with the coatings formed with unconjugated polymers. Finally, the cytocompatibility and antibacterial properties against gram-positive and gram-negative strains on coated Ti6Al4V substrates were assessed confirming the effectiveness of these polymeric coatings against bacterial infections for future applications in protecting biomedical implants.


Asunto(s)
Aleaciones/síntesis química , Antibacterianos/síntesis química , Catecoles/química , Ácido Hialurónico/química , Pirrolidinonas/química , Aleaciones/química , Aleaciones/farmacología , Antibacterianos/química , Antibacterianos/farmacología , Línea Celular , Quitosano , Materiales Biocompatibles Revestidos/síntesis química , Materiales Biocompatibles Revestidos/química , Materiales Biocompatibles Revestidos/farmacología , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Humanos , Ensayo de Materiales , Pruebas de Sensibilidad Microbiana , Microscopía de Fuerza Atómica , Espectroscopía de Fotoelectrones , Prótesis e Implantes , Propiedades de Superficie , Titanio/química , Titanio/farmacología
10.
Polymers (Basel) ; 13(4)2021 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-33671648

RESUMEN

The transfer of some innovative technologies from the laboratory to industrial scale is many times not taken into account in the design and development of some functional materials such as hydrogels to be applied in the biomedical field. There is a lack of knowledge in the scientific field where many aspects of scaling to an industrial process are ignored, and products cannot reach the market. Injectable hydrogels are a good example that we have used in our research to show the different steps needed to follow to get a product in the market based on them. From synthesis and process validation to characterization techniques used and assays performed to ensure the safety and efficacy of the product, following regulation, several well-defined protocols must be adopted. Therefore, this paper summarized all these aspects due to the lack of knowledge that exists about the industrialization of injectable products with the great importance that it entails, and it is intended to serve as a guide on this area to non-initiated scientists. More concretely, in this work, the characteristics and requirements for the development of injectable hydrogels from the laboratory to industrial scale is presented in terms of (i) synthesis techniques employed to obtain injectable hydrogels with tunable desired properties, (ii) the most common characterization techniques to characterize hydrogels, and (iii) the necessary safety and efficacy assays and protocols to industrialize and commercialize injectable hydrogels from the regulatory point of view. Finally, this review also mentioned and explained a real example of the development of a natural hyaluronic acid hydrogel that reached the market as an injectable product.

11.
Polymers (Basel) ; 14(1)2021 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-35012187

RESUMEN

Titanium (Ti) and its alloys have been demonstrated over the last decades to play an important role as inert materials in the field of orthopedic and dental implants. Nevertheless, with the widespread use of Ti, implant-associated rejection issues have arisen. To overcome these problems, antibacterial properties, fast and adequate osseointegration and long-term stability are essential features. Indeed, surface modification is currently presented as a versatile strategy for developing Ti coatings with all these challenging requirements and achieve a successful performance of the implant. Numerous approaches have been investigated to obtain stable and well-organized Ti coatings that promote the tailoring of surface chemical functionalization regardless of the geometry and shape of the implant. However, among all the approaches available in the literature to functionalize the Ti surface, a promising strategy is the combination of surface pre-activation treatments typically followed by the development of intermediate anchoring layers (self-assembled monolayers, SAMs) that serve as the supporting linkage of a final active layer. Therefore, this paper aims to review the latest approaches in the biomedical area to obtain bioactive coatings onto Ti surfaces with a special focus on (i) the most employed methods for Ti surface hydroxylation, (ii) SAMs-mediated active coatings development, and (iii) the latest advances in active agent immobilization and polymeric coatings for controlled release on Ti surfaces.

12.
Sensors (Basel) ; 20(4)2020 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-32053944

RESUMEN

Due to the importance of sensors in railway traction drives availability, sensor fault diagnosis has become a key point in order to move from preventive maintenance to condition-based maintenance. Most research works are limited to sensor fault detection and isolation, but only a few of them analyze the types of sensor faults, such as offset or gain, with the aim of reconfiguring the sensor in order to implement a fault tolerant system. This article is based on a fusion of model-based and data-driven techniques. First, an observer-based approach, using a Sliding Mode observer, is utilized for sensor fault reconstruction in real time. Then, once the fault is detected, a time window of sensor measurements and sensor fault reconstruction is sent to the remote maintenance center for fault evaluation. Finally, an offline processing is carried out to discriminate between gain and offset sensor faults, in order to get a maintenance decision-making to reconfigure the sensor during the next train stop. Fault classification is done by means of histograms and statistics. The technique here proposed is applied to the DC-link voltage sensor in a railway traction drive and is validated in a hardware-in-the-loop platform.

13.
Sensors (Basel) ; 18(7)2018 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-29932114

RESUMEN

Due to the importance of sensors in control strategy and safety, early detection of faults in sensors has become a key point to improve the availability of railway traction drives. The presented sensor fault reconstruction is based on sliding mode observers and equivalent injection signals, and it allows detecting defective sensors and isolating faults. Moreover, the severity of faults is provided. The proposed on-board fault reconstruction has been validated in a hardware-in-the-loop platform, composed of a real-time simulator and a commercial traction control unit for a tram. Low computational resources, robustness to measurement noise, and easiness to tune are the main requirements for industrial acceptance. As railway applications are not safety-critical systems, compared to aerospace applications, a fault evaluation procedure is proposed, since there is enough time to perform diagnostic tasks. This procedure analyses the fault reconstruction in the steady state, delaying the decision-making in some seconds, but minimising false detections.

14.
Sensors (Basel) ; 18(5)2018 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-29757251

RESUMEN

Due to the increasing importance of reliability and availability of electric traction drives in Railway applications, early detection of faults has become an important key for Railway traction drive manufacturers. Sensor faults are important sources of failures. Among the different fault diagnosis approaches, in this article an integral diagnosis strategy for sensors in traction drives is presented. Such strategy is composed of an observer-based approach for direct current (DC)-link voltage and catenary current sensors, a frequency analysis approach for motor current phase sensors and a hardware redundancy solution for speed sensors. None of them requires any hardware change requirement in the actual traction drive. All the fault detection and isolation approaches have been validated in a Hardware-in-the-loop platform comprising a Real Time Simulator and a commercial Traction Control Unit for a tram. In comparison to safety-critical systems in Aerospace applications, Railway applications do not need instantaneous detection, and the diagnosis is validated in a short time period for reliable decision. Combining the different approaches and existing hardware redundancy, an integral fault diagnosis solution is provided, to detect and isolate faults in all the sensors installed in the traction drive.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...