Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Intervalo de año de publicación
1.
J Immunol Res ; 2018: 3462136, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30116749

RESUMEN

Bothrops lanceolatus snake venom causes systemic thrombotic syndrome but also local inflammation involving extensive oedema, pain, and haemorrhage. Systemic thrombotic syndrome may lead to fatal pulmonary embolism and myocardial and cerebral infarction. Here, we investigated the ability of B. lanceolatus venom to activate the Complement system (C) in order to improve the understanding of venom-induced local inflammation. Data presented show that B. lanceolatus venom is able to activate all C-pathways. In human serum, the venom strongly induced the generation of anaphylatoxins, such as C5a and C4a, and the Terminal Complement complex. The venom also induced cleavage of purified human components C3, C4, and C5, with the production of biologically active C5a. Furthermore, the venom enzymatically inactivated the soluble C-regulator and the C1-inhibitor (C1-INH), and significantly increased the expression of bound C-regulators, such as MCP and CD59, on the endothelial cell membrane. Our observations that B. lanceolatus venom activates the three Complement activation pathways, resulting in anaphylatoxins generation, may suggest that this could play an important role in local inflammatory reaction and systemic thrombosis caused by the venom. Inactivation of C1-INH, which is also an important inhibitor of several coagulation proteins, may also contribute to inflammation and thrombosis. Thus, further in vivo studies may support the idea that therapeutic management of systemic B. lanceolatus envenomation could include the use of Complement inhibitors as adjunct therapy.


Asunto(s)
Bothrops , Activación de Complemento/efectos de los fármacos , Venenos de Crotálidos/toxicidad , Animales , Humanos , Martinica
2.
Toxicon ; 150: 253-260, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29890230

RESUMEN

Snakes belonging to the genus Naja (Elapid family), also known as "spitting cobras", can spit venom towards the eyes of the predator as a defensive strategy, causing painful and potentially blinding ocular envenoming. Venom ophthalmia is characterized by pain, hyperemia, blepharitis, blepharospasm and corneal erosions. Elapid venom ophthalmia is not well documented and no specific treatment exists. Furthermore, accidental ejection of venom by non-spitting vipers, as Bothrops, also occurs. The Ex vivo Eye Irritation Test model (EVEIT) has enabled important progress in the knowledge of chemical ocular burns. Considering the lack of experimental animal model, we adapted the EVEIT to study venom ophthalmia mechanisms. Ex vivo rabbit corneas were exposed to venoms from spitting (Naja mossambica, Naja nigricollis) and non-spitting (Naja naja, Bothrops jararaca and Bothrops lanceolatus) snakes, and rinsed or not with water. The corneal thickness and the depth of damage were assessed using high-resolution optical coherence tomography (HR-OCT) imaging and histological analysis. All Naja venoms induced significant corneal edema, collagen structure disorganization and epithelial necrosis. Corneas envenomed by African N. mossambica and N. nigricollis venoms were completely opaque. Opacification was not observed in corneas treated with venoms from non-spitting snakes, such as the Asian cobra, N. naja, and the vipers, B. jararaca and B. lanceolatus. Moreover, Bothrops venoms were able to damage the epithelium and cause collagen structure disorganization, but not edema. Immediate water rinsing improved corneal status, though damage and edema could still be observed. In conclusion, the present study shows that the EVEIT model was successfully adapted to set a new experimental ex vivo animal model of ophthalmia, caused by snake venoms, which will enable to explore new therapies for venom ophthalmia.


Asunto(s)
Córnea/efectos de los fármacos , Venenos Elapídicos/toxicidad , Pruebas de Toxicidad/métodos , Animales , Elapidae , Conejos
3.
J Immunol Res, v. 2018, 3462136, 2018
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2546

RESUMEN

Bothrops lanceolatus snake venom causes systemic thrombotic syndrome but also local inflammation involving extensive oedema, pain, and haemorrhage. Systemic thrombotic syndrome may lead to fatal pulmonary embolism and myocardial and cerebral infarction. Here, we investigated the ability of B. lanceolatus venom to activate the Complement system (C) in order to improve the understanding of venom-induced local inflammation. Data presented show that B. lanceolatus venom is able to activate all C-pathways. In human serum, the venom strongly induced the generation of anaphylatoxins, such as C5a and C4a, and the Terminal Complement complex. The venom also induced cleavage of purified human components C3, C4, and C5, with the production of biologically active C5a. Furthermore, the venom enzymatically inactivated the soluble C-regulator and the C1-inhibitor (C1-INH), and significantly increased the expression of bound C-regulators, such as MCP and CD59, on the endothelial cell membrane. Our observations that B. lanceolatus venom activates the three Complement activation pathways, resulting in anaphylatoxins generation, may suggest that this could play an important role in local inflammatory reaction and systemic thrombosis caused by the venom. Inactivation of C1-INH, which is also an important inhibitor of several coagulation proteins, may also contribute to inflammation and thrombosis. Thus, further in vivo studies may support the idea that therapeutic management of systemic B. lanceolatus envenomation could include the use of Complement inhibitors as adjunct therapy.

4.
Toxicon, v. 150, p. 253-260, ago. 2018
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2536

RESUMEN

Snakes belonging to the genus Naja (Elapid family), also known as "spitting cobras", can spit venom towards the eyes of the predator as a defensive strategy, causing painful and potentially blinding ocular envenoming. Venom ophthalmia is characterized by pain, hyperemia, blepharitis, blepharospasm and corneal erosions. Elapid venom ophthalmia is not well documented and no specific treatment exists. Furthermore, accidental ejection of venom by non-spitting vipers, as Bothrops, also occurs. The Ex vivo Eye Irritation Test model (EVEIT) has enabled important progress in the knowledge of chemical ocular burns. Considering the lack of experimental animal model, we adapted the EVEIT to study venom ophthalmia mechanisms. Ex vivo rabbit corneas were exposed to venoms from spitting (Naja mossambica, Naja nigricollis) and non-spitting (Naja naja, Bothrops jararaca and Bothrops lanceolatus) snakes, and rinsed or not with water. The corneal thickness and the depth of damage were assessed using high-resolution optical coherence tomography (HR-OCT) imaging and histological analysis. All Naja venoms induced significant corneal edema, collagen structure disorganization and epithelial necrosis. Corneas envenomed by African N. mossambica and N. nigricollis venoms were completely opaque. Opacification was not observed in corneas treated with venoms from non-spitting snakes, such as the Asian cobra, N. naja, and the vipers, B. jararaca and B. lanceolatus. Moreover, Bothrops venoms were able to damage the epithelium and cause collagen structure disorganization, but not edema. Immediate water rinsing improved corneal status, though damage and edema could still be observed. In conclusion, the present study shows that the EVEIT model was successfully adapted to set a new experimental ex vivo animal model of ophthalmia, caused by snake venoms, which will enable to explore new therapies for venom ophthalmia.

5.
J Immunol. Res. ; 2018: 3462136, 2018.
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib15447

RESUMEN

Bothrops lanceolatus snake venom causes systemic thrombotic syndrome but also local inflammation involving extensive oedema, pain, and haemorrhage. Systemic thrombotic syndrome may lead to fatal pulmonary embolism and myocardial and cerebral infarction. Here, we investigated the ability of B. lanceolatus venom to activate the Complement system (C) in order to improve the understanding of venom-induced local inflammation. Data presented show that B. lanceolatus venom is able to activate all C-pathways. In human serum, the venom strongly induced the generation of anaphylatoxins, such as C5a and C4a, and the Terminal Complement complex. The venom also induced cleavage of purified human components C3, C4, and C5, with the production of biologically active C5a. Furthermore, the venom enzymatically inactivated the soluble C-regulator and the C1-inhibitor (C1-INH), and significantly increased the expression of bound C-regulators, such as MCP and CD59, on the endothelial cell membrane. Our observations that B. lanceolatus venom activates the three Complement activation pathways, resulting in anaphylatoxins generation, may suggest that this could play an important role in local inflammatory reaction and systemic thrombosis caused by the venom. Inactivation of C1-INH, which is also an important inhibitor of several coagulation proteins, may also contribute to inflammation and thrombosis. Thus, further in vivo studies may support the idea that therapeutic management of systemic B. lanceolatus envenomation could include the use of Complement inhibitors as adjunct therapy.

6.
Toxicon ; 150: p. 253-260, 2018.
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib15327

RESUMEN

Snakes belonging to the genus Naja (Elapid family), also known as "spitting cobras", can spit venom towards the eyes of the predator as a defensive strategy, causing painful and potentially blinding ocular envenoming. Venom ophthalmia is characterized by pain, hyperemia, blepharitis, blepharospasm and corneal erosions. Elapid venom ophthalmia is not well documented and no specific treatment exists. Furthermore, accidental ejection of venom by non-spitting vipers, as Bothrops, also occurs. The Ex vivo Eye Irritation Test model (EVEIT) has enabled important progress in the knowledge of chemical ocular burns. Considering the lack of experimental animal model, we adapted the EVEIT to study venom ophthalmia mechanisms. Ex vivo rabbit corneas were exposed to venoms from spitting (Naja mossambica, Naja nigricollis) and non-spitting (Naja naja, Bothrops jararaca and Bothrops lanceolatus) snakes, and rinsed or not with water. The corneal thickness and the depth of damage were assessed using high-resolution optical coherence tomography (HR-OCT) imaging and histological analysis. All Naja venoms induced significant corneal edema, collagen structure disorganization and epithelial necrosis. Corneas envenomed by African N. mossambica and N. nigricollis venoms were completely opaque. Opacification was not observed in corneas treated with venoms from non-spitting snakes, such as the Asian cobra, N. naja, and the vipers, B. jararaca and B. lanceolatus. Moreover, Bothrops venoms were able to damage the epithelium and cause collagen structure disorganization, but not edema. Immediate water rinsing improved corneal status, though damage and edema could still be observed. In conclusion, the present study shows that the EVEIT model was successfully adapted to set a new experimental ex vivo animal model of ophthalmia, caused by snake venoms, which will enable to explore new therapies for venom ophthalmia.

7.
Toxins (Basel) ; 9(8)2017 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-28783135

RESUMEN

Bothrops lanceolatus, commonly named 'Fer-de-Lance', is an endemic snake of the French Caribbean Island of Martinique. Envenomations by B. lanceolatus present clinical aspects characterized by systemic thrombotic syndrome and important local inflammation, involving edema and pain but limited hemorrhage. To investigate mechanisms of venom-induced inflammation, B. lanceolatus venom was characterized, its cross-reactivity with bothropic antivenom explored, its cytotoxicity on human keratinocytes and vascular cells, and the production of cytokines and chemokines were analyzed. We used electrophoretic separation, zymography, colorimetric or fluorimetric enzymatic assays, and immunochemical assays. Therapeutic South American bothropic antivenom cross-reacted with B. lanceolatus venom and completely or partially abolished its PLA2, hyaluronidase, and proteolytic activities, as well as its cytotoxicity for keratinocytes. The substrate specificity of B. lanceolatus venom proteases was emphasized. B. lanceolatus venom cytotoxicity was compared to the B. jararaca venom. Both venoms were highly cytotoxic for keratinocytes (HaCaT), whereas B. lanceolatus venom showed particularly low toxicity for endothelial cells (EAhy926). Patterns of cytokine and chemokine production by cells exposed to the venoms were highly pro-inflammatory. Thus, the results presented here show that B. lanceolatus venom toxins share important antigenic similarities with South American Bothrops species toxins, although their proteases have acquired particular substrate specificity. Moreover, the venom displays important cytotoxic and pro-inflammatory action on human cell types such as keratinocytes and endothelial cells, which are important players in the local and systemic compartments affected by the envenomation.


Asunto(s)
Bothrops , Venenos de Crotálidos/toxicidad , Animales , Antivenenos/farmacología , Línea Celular , Supervivencia Celular/efectos de los fármacos , Citocinas/metabolismo , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Humanos , Hialuronoglucosaminidasa/metabolismo , Molécula 1 de Adhesión Intercelular/metabolismo , Queratinocitos/efectos de los fármacos , Queratinocitos/metabolismo , Fosfolipasas/metabolismo , Proteolisis , Mordeduras de Serpientes , Tromboplastina/metabolismo
8.
Toxins ; 9(8): 244, 2017.
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib15068

RESUMEN

Bothrops lanceolatus, commonly named 'Fer-de-Lance', is an endemic snake of the French Caribbean Island of Martinique. Envenomations by B. lanceolatus present clinical aspects characterized by systemic thrombotic syndrome and important local inflammation, involving edema and pain but limited hemorrhage. To investigate mechanisms of venom-induced inflammation, B. lanceolatus venom was characterized, its cross-reactivity with bothropic antivenom explored, its cytotoxicity on human keratinocytes and vascular cells, and the production of cytokines and chemokines were analyzed. We used electrophoretic separation, zymography, colorimetric or fluorimetric enzymatic assays, and immunochemical assays. Therapeutic South American bothropic antivenom cross-reacted with B. lanceolatus venom and completely or partially abolished its PLA2, hyaluronidase, and proteolytic activities, as well as its cytotoxicity for keratinocytes. The substrate specificity of B. lanceolatus venom proteases was emphasized. B. lanceolatus venom cytotoxicity was compared to the B. jararaca venom. Both venoms were highly cytotoxic for keratinocytes (HaCaT), whereas B. lanceolatus venom showed particularly low toxicity for endothelial cells (EAhy926). Patterns of cytokine and chemokine production by cells exposed to the venoms were highly pro-inflammatory. Thus, the results presented here show that B. lanceolatus venom toxins share important antigenic similarities with South American Bothrops species toxins, although their proteases have acquired particular substrate specificity. Moreover, the venom displays important cytotoxic and pro-inflammatory action on human cell types such as keratinocytes and endothelial cells, which are important players in the local and systemic compartments affected by the envenomation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...