Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
iScience ; 24(11): 103321, 2021 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-34816099

RESUMEN

A single protein can be multifaceted depending on the cellular contexts and interacting molecules. LIN28A is an RNA-binding protein that governs developmental timing, cellular proliferation, differentiation, stem cell pluripotency, and metabolism. In addition to its best-known roles in microRNA biogenesis, diverse molecular roles have been recognized. In the nervous system, LIN28A is known to play critical roles in proliferation and differentiation of neural progenitor cells (NPCs). We profiled the endogenous LIN28A-interacting proteins in NPCs differentiated from human induced pluripotent stem (iPS) cells using immunoprecipitation and liquid chromatography-tandem mass spectrometry. We identified over 500 LIN28A-interacting proteins, including 156 RNA-independent interactors. Functions of these proteins span a wide range of gene regulatory processes. Prompted by the interactome data, we revealed that LIN28A may impact the subcellular distribution of its interactors and stress granule formation upon oxidative stress. Overall, our analysis opens multiple avenues for elaborating molecular roles and characteristics of LIN28A.

2.
Mol Biochem Parasitol ; 242: 111362, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33513391

RESUMEN

Plasmodium falciparum causes the deadliest form of malaria. Adequate redox control is crucial for this protozoan parasite to overcome oxidative and nitrosative challenges, thus enabling its survival. Sulfenylation is an oxidative post-translational modification, which acts as a molecular on/off switch, regulating protein activity. To obtain a better understanding of which proteins are redox regulated in malaria parasites, we established an optimized affinity capture protocol coupled with mass spectrometry analysis for identification of in vivo sulfenylated proteins. The non-dimedone based probe BCN-Bio1 shows reaction rates over 100-times that of commonly used dimedone-based probes, allowing for a rapid trapping of sulfenylated proteins. Mass spectrometry analysis of BCN-Bio1 labeled proteins revealed the first insight into the Plasmodium falciparum trophozoite sulfenylome, identifying 102 proteins containing 152 sulfenylation sites. Comparison with Plasmodium proteins modified by S-glutathionylation and S-nitrosation showed a high overlap, suggesting a common core of proteins undergoing redox regulation by multiple mechanisms. Furthermore, parasite proteins which were identified as targets for sulfenylation were also identified as being sulfenylated in other organisms, especially proteins of the glycolytic cycle. This study suggests that a number of Plasmodium proteins are subject to redox regulation and it provides a basis for further investigations into the exact structural and biochemical basis of regulation, and a deeper understanding of cross-talk between post-translational modifications.


Asunto(s)
Compuestos Bicíclicos con Puentes/química , Sondas Moleculares/química , Plasmodium falciparum/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas Protozoarias/metabolismo , Ácidos Sulfénicos/metabolismo , Trofozoítos/metabolismo , Células Cultivadas , Cisteína/metabolismo , Eritrocitos/parasitología , Ontología de Genes , Glutatión/metabolismo , Humanos , Espectrometría de Masas , Anotación de Secuencia Molecular , Compuestos Nitrosos/metabolismo , Oxidación-Reducción , Plasmodium falciparum/genética , Proteínas Protozoarias/genética , Coloración y Etiquetado/métodos , Trofozoítos/genética
3.
Sci Rep ; 9(1): 13542, 2019 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-31537845

RESUMEN

Peroxiredoxins (Prxs) are crucially involved in maintaining intracellular H2O2 homeostasis via their peroxidase activity. However, more recently, this class of proteins was found to also transmit oxidizing equivalents to selected downstream proteins, which suggests an important function of Prxs in the regulation of cellular protein redox relays. Using a pull-down assay based on mixed disulfide fishing, we characterized the thiol-dependent interactome of cytosolic Prx1a and mitochondrial Prx1m from the apicomplexan malaria parasite Plasmodium falciparum (Pf). Here, 127 cytosolic and 20 mitochondrial proteins that are components of essential cellular processes were found to interact with PfPrx1a and PfPrx1m, respectively. Notably, our data obtained with active-site mutants suggests that reducing equivalents might also be transferred from Prxs to target proteins. Initial functional analyses indicated that the interaction with Prx can strongly impact the activity of target proteins. The results provide initial insights into the interactome of Prxs at the level of a eukaryotic whole cell proteome. Furthermore, they contribute to our understanding of redox regulatory principles and thiol-dependent redox relays of Prxs in subcellular compartments.


Asunto(s)
Peroxirredoxinas/metabolismo , Plasmodium falciparum/metabolismo , Antioxidantes/metabolismo , Cisteína/metabolismo , Citosol/metabolismo , Disulfuros/metabolismo , Peróxido de Hidrógeno/metabolismo , Mitocondrias/metabolismo , Oxidación-Reducción , Peroxirredoxinas/fisiología , Plasmodium falciparum/genética , Plasmodium falciparum/patogenicidad , Compuestos de Sulfhidrilo
4.
Nat Commun ; 9(1): 3693, 2018 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-30209313

RESUMEN

As the sole target of broadly neutralizing antibodies (bnAbs) to HIV, the envelope glycoprotein (Env) trimer is the focus of vaccination strategies designed to elicit protective bnAbs in humans. Because HIV Env is densely glycosylated with 75-90 N-glycans per trimer, most bnAbs use or accommodate them in their binding epitope, making the glycosylation of recombinant Env a key aspect of HIV vaccine design. Upon analysis of three HIV strains, we here find that site-specific glycosylation of Env from infectious virus closely matches Envs from corresponding recombinant membrane-bound trimers. However, viral Envs differ significantly from recombinant soluble, cleaved (SOSIP) Env trimers, strongly impacting antigenicity. These results provide a benchmark for virus Env glycosylation needed for the design of soluble Env trimers as part of an overall HIV vaccine strategy.


Asunto(s)
VIH-1/inmunología , Polisacáridos/inmunología , Polisacáridos/metabolismo , Anticuerpos Neutralizantes/inmunología , Epítopos/inmunología , Anticuerpos Anti-VIH/inmunología , VIH-1/metabolismo , VIH-1/patogenicidad , Humanos , Multimerización de Proteína
5.
Nat Protoc ; 13(6): 1196-1212, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29725121

RESUMEN

N-glycans contribute to the folding, stability and functions of the proteins they decorate. They are produced by transfer of the glycan precursor to the sequon Asn-X-Thr/Ser, followed by enzymatic trimming to a high-mannose-type core and sequential addition of monosaccharides to generate complex-type and hybrid glycans. This process, mediated by the concerted action of multiple enzymes, produces a mixture of related glycoforms at each glycosite, making analysis of glycosylation difficult. To address this analytical challenge, we developed a robust semiquantitative mass spectrometry (MS)-based method that determines the degree of glycan occupancy at each glycosite and the proportion of N-glycans processed from high-mannose type to complex type. It is applicable to virtually any glycoprotein, and a complete analysis can be conducted with 30 µg of protein. Here, we provide a detailed description of the method that includes procedures for (i) proteolytic digestion of glycoprotein(s) with specific and nonspecific proteases; (ii) denaturation of proteases by heating; (iii) sequential treatment of the glycopeptide mixture with two endoglycosidases, Endo H and PNGase F, to create unique mass signatures for the three glycosylation states; (iv) LC-MS/MS analysis; and (v) data analysis for identification and quantitation of peptides for the three glycosylation states. Full coverage of site-specific glycosylation of glycoproteins is achieved, with up to thousands of high-confidence spectra hits for each glycosite. The protocol can be performed by an experienced technician or student/postdoc with basic skills for proteomics experiments and takes ∼7 d to complete.


Asunto(s)
Cromatografía Liquida/métodos , Glicoproteínas/química , Polisacáridos/análisis , Espectrometría de Masas en Tándem/métodos
6.
Nat Commun ; 8: 14954, 2017 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-28348411

RESUMEN

HIV-1 envelope glycoprotein (Env) is the sole target for broadly neutralizing antibodies (bnAbs) and the focus for design of an antibody-based HIV vaccine. The Env trimer is covered by ∼90N-linked glycans, which shield the underlying protein from immune surveillance. bNAbs to HIV develop during infection, with many showing dependence on glycans for binding to Env. The ability to routinely assess the glycan type at each glycosylation site may facilitate design of improved vaccine candidates. Here we present a general mass spectrometry-based proteomics strategy that uses specific endoglycosidases to introduce mass signatures that distinguish peptide glycosites that are unoccupied or occupied by high-mannose/hybrid or complex-type glycans. The method yields >95% sequence coverage for Env, provides semi-quantitative analysis of the glycosylation status at each glycosite. We find that most glycosites in recombinant Env trimers are fully occupied by glycans, varying in the proportion of high-mannose/hybrid and complex-type glycans.


Asunto(s)
Proteína gp120 de Envoltorio del VIH/metabolismo , VIH-1/metabolismo , Epítopos/química , Glicosilación , Proteína gp120 de Envoltorio del VIH/química , Espectrometría de Masas , Modelos Moleculares , Péptidos/química , Polisacáridos/química , Multimerización de Proteína , Reproducibilidad de los Resultados
7.
Sci Rep ; 5: 17818, 2015 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-26639022

RESUMEN

In eukaryotic cells, the ubiquitin-proteasome system as a key regulator of protein quality control is an excellent drug target. We therefore aimed to analyze the 26S proteasome complex in the malaria parasite Plasmodium falciparum, which still threatens almost half of the world's population. First, we established an affinity purification protocol allowing for the isolation of functional 26S proteasome complexes from the parasite. Subunit composition of the proteasome and component stoichiometry were studied and physiologic interacting partners were identified via in situ protein crosslinking. Furthermore, intrinsic ubiquitin receptors of the plasmodial proteasome were determined and their roles in proteasomal substrate recognition were analyzed. Notably, PfUSP14 was characterized as a proteasome-associated deubiquitinase resulting in the concept that targeting proteasomal deubiquitinating activity in P. falciparum may represent a promising antimalarial strategy. The data provide insights into a profound network orchestrated by the plasmodial proteasome and identified novel drug target candidates in the ubiquitin-proteasome system.


Asunto(s)
Plasmodium falciparum/enzimología , Complejo de la Endopetidasa Proteasomal/metabolismo , Antimaláricos/farmacología , Cromatografía de Afinidad , Reactivos de Enlaces Cruzados/farmacología , Inhibidores Enzimáticos/farmacología , Eritrocitos/efectos de los fármacos , Eritrocitos/parasitología , Formaldehído/farmacología , Humanos , Complejos Multiproteicos/aislamiento & purificación , Complejos Multiproteicos/metabolismo , Plasmodium falciparum/efectos de los fármacos , Complejo de la Endopetidasa Proteasomal/aislamiento & purificación , Estructura Terciaria de Proteína , Proteómica , Proteínas Protozoarias/química , Proteínas Protozoarias/metabolismo , Receptores de Superficie Celular/química , Receptores de Superficie Celular/metabolismo , Homología Estructural de Proteína , Ubiquitina/metabolismo , Proteasas Ubiquitina-Específicas/metabolismo
8.
Bioinformatics ; 30(15): 2208-9, 2014 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-24681903

RESUMEN

MOTIVATION: We introduce Census 2, an update of a mass spectrometry data analysis tool for peptide/protein quantification. New features for analysis of isobaric labeling, such as Tandem Mass Tag (TMT) or Isobaric Tags for Relative and Absolute Quantification (iTRAQ), have been added in this version, including a reporter ion impurity correction, a reporter ion intensity threshold filter and an option for weighted normalization to correct mixing errors. TMT/iTRAQ analysis can be performed on experiments using HCD (High Energy Collision Dissociation) only, CID (Collision Induced Dissociation)/HCD (High Energy Collision Dissociation) dual scans or HCD triple-stage mass spectrometry data. To improve measurement accuracy, we implemented weighted normalization, multiple tandem spectral approach, impurity correction and dynamic intensity threshold features. AVAILABILITY AND IMPLEMENTATION: Census 2 supports multiple input file formats including MS1/MS2, DTASelect, mzXML and pepXML. It requires JAVA version 6 or later to run. Free download of Census 2 for academic users is available at http://fields.scripps.edu/census/index.php. CONTACT: jyates@scripps.edu SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Espectrometría de Masas/métodos , Proteómica/métodos , Estadística como Asunto/métodos , Animales , Línea Celular , Marcaje Isotópico , Ratones , Péptidos/análisis , Péptidos/química , Proteínas/análisis , Proteínas/química
9.
Antioxid Redox Signal ; 20(18): 2923-35, 2014 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-24256207

RESUMEN

AIMS: Due to its life in different hosts and environments, the human malaria parasite Plasmodium falciparum is exposed to oxidative and nitrosative challenges. Nitric oxide (NO) and NO-derived reactive nitrogen species can constitute nitrosative stress and play a major role in NO-related signaling. However, the mode of action of NO and its targets in P. falciparum have hardly been characterized. Protein S-nitrosylation (SNO), a posttranslational modification of protein cysteine thiols, has emerged as a principal mechanism by which NO exerts diverse biological effects. Despite its potential importance, SNO has hardly been studied in human malaria parasites. Using a biotin-switch approach coupled to mass spectrometry, we systemically studied SNO in P. falciparum cell extracts. RESULTS: We identified 319 potential targets of SNO that are widely distributed throughout various cellular pathways. Glycolysis in the parasite was found to be a major target, with glyceraldehyde-3-phosphate dehydrogenase being strongly inhibited by S-nitrosylation of its active site cysteine. Furthermore, we show that P. falciparum thioredoxin 1 (PfTrx1) can be S-nitrosylated at its nonactive site cysteine (Cys43). Mechanistic studies indicate that PfTrx1 possesses both denitrosylating and transnitrosylating activities mediated by its active site cysteines and Cys43, respectively. INNOVATION: This work provides first insights into the S-nitrosoproteome of P. falciparum and suggests that the malaria parasite employs the thioredoxin system to deal with nitrosative challenges. CONCLUSION: Our results indicate that SNO may influence a variety of metabolic processes in P. falciparum and contribute to our understanding of NO-related signaling processes and cytotoxicity in the parasites.


Asunto(s)
Cisteína/metabolismo , Plasmodium falciparum/metabolismo , Procesamiento Proteico-Postraduccional , Especies de Nitrógeno Reactivo/metabolismo , S-Nitrosotioles/metabolismo , Gliceraldehído-3-Fosfato Deshidrogenasas/metabolismo , Humanos , Espectrometría de Masas , Óxido Nítrico/metabolismo , Proteínas/metabolismo , Proteómica , Compuestos de Sulfhidrilo/metabolismo , Tiorredoxinas/metabolismo
10.
Proc Natl Acad Sci U S A ; 110(8): E726-35, 2013 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-23382246

RESUMEN

Postnatal bilateral whisker trimming was used as a model system to test how synaptic proteomes are altered in barrel cortex by sensory deprivation during synaptogenesis. Using quantitative mass spectrometry, we quantified more than 7,000 synaptic proteins and identified 89 significantly reduced and 161 significantly elevated proteins in sensory-deprived synapses, 22 of which were validated by immunoblotting. More than 95% of quantified proteins, including abundant synaptic proteins such as PSD-95 and gephyrin, exhibited no significant difference under high- and low-activity rearing conditions, suggesting no tissue-wide changes in excitatory or inhibitory synaptic density. In contrast, several proteins that promote mature spine morphology and synaptic strength, such as excitatory glutamate receptors and known accessory factors, were reduced significantly in deprived synapses. Immunohistochemistry revealed that the reduction in SynGAP1, a postsynaptic scaffolding protein, was restricted largely to layer I of barrel cortex in sensory-deprived rats. In addition, protein-degradation machinery such as proteasome subunits, E2 ligases, and E3 ligases, accumulated significantly in deprived synapses, suggesting targeted synaptic protein degradation under sensory deprivation. Importantly, this screen identified synaptic proteins whose levels were affected by sensory deprivation but whose synaptic roles have not yet been characterized in mammalian neurons. These data demonstrate the feasibility of defining synaptic proteomes under different sensory rearing conditions and could be applied to elucidate further molecular mechanisms of sensory development.


Asunto(s)
Proteínas del Tejido Nervioso/metabolismo , Proteómica , Privación Sensorial , Sinapsis , Animales , Inmunohistoquímica , Ratones , Microscopía Electrónica , Espectrometría de Masas en Tándem
11.
PLoS One ; 7(9): e45795, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23049864

RESUMEN

Biofilms formed on tooth surfaces are comprised of mixed microbiota enmeshed in an extracellular matrix. Oral biofilms are constantly exposed to environmental changes, which influence the microbial composition, matrix formation and expression of virulence. Streptococcus mutans and sucrose are key modulators associated with the evolution of virulent-cariogenic biofilms. In this study, we used a high-throughput quantitative proteomics approach to examine how S. mutans produces relevant proteins that facilitate its establishment and optimal survival during mixed-species biofilms development induced by sucrose. Biofilms of S. mutans, alone or mixed with Actinomyces naeslundii and Streptococcus oralis, were initially formed onto saliva-coated hydroxyapatite surface under carbohydrate-limiting condition. Sucrose (1%, w/v) was then introduced to cause environmental changes, and to induce biofilm accumulation. Multidimensional protein identification technology (MudPIT) approach detected up to 60% of proteins encoded by S. mutans within biofilms. Specific proteins associated with exopolysaccharide matrix assembly, metabolic and stress adaptation processes were highly abundant as the biofilm transit from earlier to later developmental stages following sucrose introduction. Our results indicate that S. mutans within a mixed-species biofilm community increases the expression of specific genes associated with glucan synthesis and remodeling (gtfBC, dexA) and glucan-binding (gbpB) during this transition (P<0.05). Furthermore, S. mutans up-regulates specific adaptation mechanisms to cope with acidic environments (F1F0-ATPase system, fatty acid biosynthesis, branched chain amino acids metabolism), and molecular chaperones (GroEL). Interestingly, the protein levels and gene expression are in general augmented when S. mutans form mixed-species biofilms (vs. single-species biofilms) demonstrating fundamental differences in the matrix assembly, survival and biofilm maintenance in the presence of other organisms. Our data provide insights about how S. mutans optimizes its metabolism and adapts/survives within the mixed-species community in response to a dynamically changing environment. This reflects the intricate physiological processes linked to expression of virulence by this bacterium within complex biofilms.


Asunto(s)
Biopelículas , Proteómica/métodos , Streptococcus mutans/metabolismo , Actinomyces/metabolismo , Ácidos Grasos/química , Glucanos/química , Concentración de Iones de Hidrógeno , Lipopolisacáridos/química , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Mutación , ATPasas de Translocación de Protón/metabolismo , Sacarosa/química , Espectrometría de Masas en Tándem/métodos , Ácidos Teicoicos/química , Regulación hacia Arriba
13.
PLoS Pathog ; 8(4): e1002623, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22496649

RESUMEN

Virulent biofilms are responsible for a range of infections, including oral diseases. All biofilms harbor a microbial-derived extracellular-matrix. The exopolysaccharides (EPS) formed on tooth-pellicle and bacterial surfaces provide binding sites for microorganisms; eventually the accumulated EPS enmeshes microbial cells. The metabolic activity of the bacteria within this matrix leads to acidification of the milieu. We explored the mechanisms through which the Streptococcus mutans-produced EPS-matrix modulates the three-dimensional (3D) architecture and the population shifts during morphogenesis of biofilms on a saliva-coated-apatitic surface using a mixed-bacterial species system. Concomitantly, we examined whether the matrix influences the development of pH-microenvironments within intact-biofilms using a novel 3D in situ pH-mapping technique. Data reveal that the production of the EPS-matrix helps to create spatial heterogeneities by forming an intricate network of exopolysaccharide-enmeshed bacterial-islets (microcolonies) through localized cell-to-matrix interactions. This complex 3D architecture creates compartmentalized acidic and EPS-rich microenvironments throughout the biofilm, which triggers the dominance of pathogenic S. mutans within a mixed-species system. The establishment of a 3D-matrix and EPS-enmeshed microcolonies were largely mediated by the S. mutans gtfB/gtfC genes, expression of which was enhanced in the presence of Actinomyces naeslundii and Streptococcus oralis. Acidic pockets were found only in the interiors of bacterial-islets that are protected by EPS, which impedes rapid neutralization by buffer (pH 7.0). As a result, regions of low pH (<5.5) were detected at specific locations along the surface of attachment. Resistance to chlorhexidine was enhanced in cells within EPS-microcolony complexes compared to those outside such structures within the biofilm. Our results illustrate the critical interaction between matrix architecture and pH heterogeneity in the 3D environment. The formation of structured acidic-microenvironments in close proximity to the apatite-surface is an essential factor associated with virulence in cariogenic-biofilms. These observations may have relevance beyond the mouth, as matrix is inherent to all biofilms.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Boca/microbiología , Polisacáridos/metabolismo , Streptococcus mutans , Streptococcus oralis , Animales , Humanos , Concentración de Iones de Hidrógeno , Streptococcus mutans/crecimiento & desarrollo , Streptococcus mutans/metabolismo , Streptococcus mutans/patogenicidad , Streptococcus oralis/crecimiento & desarrollo , Streptococcus oralis/metabolismo , Streptococcus oralis/patogenicidad , Factores de Virulencia/metabolismo
14.
Antioxid Redox Signal ; 15(11): 2855-65, 2011 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-21595565

RESUMEN

AIMS: Protein S-glutathionylation is a widely distributed post-translational modification of thiol groups with glutathione that can function as a redox-sensitive switch to mediate redox regulation and signal transduction. The malaria parasite Plasmodium falciparum is exposed to intense oxidative stress and possesses the enzymatic system required to regulate protein S-glutathionylation, but despite its potential importance, protein S-glutathionylation has not yet been studied in malaria parasites. In this work we applied a method based on enzymatic deglutathionylation, affinity purification of biotin-maleimide-tagged proteins, and proteomic analyses to characterize the Plasmodium glutathionylome. RESULTS: We identified 493 targets of protein S-glutathionylation in Plasmodium. Functional profiles revealed that the targets are components of central metabolic pathways, such as nitrogen compound metabolism and protein metabolism. Fifteen identified proteins with important functions in metabolic pathways (thioredoxin reductase, thioredoxin, thioredoxin peroxidase 1, glutathione reductase, glutathione S-transferase, plasmoredoxin, mitochondrial dihydrolipoamide dehydrogenase, glutamate dehydrogenase 1, glyoxalase I and II, ornithine δ-aminotransferase, lactate dehydrogenase, glyceraldehyde 3-phosphate dehydrogenase [GAPDH], pyruvate kinase [PK], and phosphoglycerate mutase) were further analyzed to study their ability to form mixed disulfides with glutathione. We demonstrate that P. falciparum GAPDH, PK, and ornithine δ-aminotransferase are reversibly inhibited by S-glutathionylation. Further, we provide evidence that not only P. falciparum glutaredoxin 1, but also thioredoxin 1 and plasmoredoxin are able to efficiently catalyze protein deglutathionylation. INNOVATION: We used an affinity-purification based proteomic approach to characterize the Plasmodium glutathionylome. CONCLUSION: Our results indicate a wide regulative use of S-glutathionylation in the malaria parasite and contribute to our understanding of redox-regulatory processes in this pathogen.


Asunto(s)
Glutatión/metabolismo , Plasmodium falciparum/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas Protozoarias/metabolismo , Western Blotting , Glutarredoxinas/química , Disulfuro de Glutatión/química , Gliceraldehído-3-Fosfato Deshidrogenasas/química , Gliceraldehído-3-Fosfato Deshidrogenasas/metabolismo , Ornitina-Oxo-Ácido Transaminasa/antagonistas & inhibidores , Ornitina-Oxo-Ácido Transaminasa/química , Ornitina-Oxo-Ácido Transaminasa/metabolismo , Estrés Oxidativo , Peroxirredoxinas/química , Peroxirredoxinas/metabolismo , Plasmodium falciparum/enzimología , Piruvato Quinasa/química , Piruvato Quinasa/metabolismo , Tiorredoxinas/química
15.
J Proteome Res ; 9(12): 6605-14, 2010 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-20858015

RESUMEN

The saliva proteome includes host defense factors and specific bacterial-binding proteins that modulate microbial growth and colonization of the tooth surface in the oral cavity. A multidimensional mass spectrometry approach identified the major host-derived salivary proteins that interacted with Streptococcus mutans (strain UA159), the primary microorganism associated with the pathogenesis of dental caries. Two abundant host proteins were found to tightly bind to S. mutans cells, common salivary protein-1 (CSP-1) and deleted in malignant brain tumor 1 (DMBT1, also known as salivary agglutinin or gp340). In contrast to gp340, limited functional information is available on CSP-1. The sequence of CSP-1 shares 38.1% similarity with rat CSP-1. Recombinant CSP-1 (rCSP-1) protein did not cause aggregation of S. mutans cells and was devoid of any significant biocidal activity (2.5 to 10 µg/mL). However, S. mutans cells exposed to rCSP-1 (10 µg/mL) in saliva displayed enhanced adherence to experimental salivary pellicle and to glucans in the pellicle formed on hydroxyapatite surfaces. Thus, our data demonstrate that the host salivary protein CSP-1 binds to S. mutans cells and may influence the initial colonization of this pathogenic bacterium onto the tooth surface.


Asunto(s)
Película Dental/metabolismo , Durapatita/metabolismo , Glucanos/metabolismo , Proteínas y Péptidos Salivales/metabolismo , Streptococcus mutans/metabolismo , Secuencia de Aminoácidos , Animales , Adhesión Bacteriana/efectos de los fármacos , Proteínas de Unión al Calcio , Línea Celular , Proteínas de Unión al ADN , Película Dental/efectos de los fármacos , Película Dental/microbiología , Electroforesis en Gel de Poliacrilamida , Humanos , Péptidos y Proteínas de Señalización Intercelular , Datos de Secuencia Molecular , Unión Proteica , Proteínas/genética , Proteínas/metabolismo , Proteínas/farmacología , Receptores de Superficie Celular/metabolismo , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacología , Saliva/metabolismo , Saliva/microbiología , Proteínas y Péptidos Salivales/genética , Proteínas y Péptidos Salivales/farmacología , Homología de Secuencia de Aminoácido , Streptococcus mutans/efectos de los fármacos , Streptococcus mutans/crecimiento & desarrollo , Proteínas Supresoras de Tumor
16.
Science ; 325(5936): 90-3, 2009 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-19574390

RESUMEN

The finding that the metazoan hypoxic response is regulated by oxygen-dependent posttranslational hydroxylations, which regulate the activity and lifetime of hypoxia-inducible factor (HIF), has raised the question of whether other hydroxylases are involved in the regulation of gene expression. We reveal that the splicing factor U2 small nuclear ribonucleoprotein auxiliary factor 65-kilodalton subunit (U2AF65) undergoes posttranslational lysyl-5-hydroxylation catalyzed by the Fe(II) and 2-oxoglutarate-dependent dioxygenase Jumonji domain-6 protein (Jmjd6). Jmjd6 is a nuclear protein that has an important role in vertebrate development and is a human homolog of the HIF asparaginyl-hydroxylase. Jmjd6 is shown to change alternative RNA splicing of some, but not all, of the endogenous and reporter genes, supporting a specific role for Jmjd6 in the regulation of RNA splicing.


Asunto(s)
Empalme Alternativo , Proteínas Nucleares/metabolismo , Receptores de Superficie Celular/metabolismo , Ribonucleoproteínas/metabolismo , Secuencia de Aminoácidos , Biocatálisis , Línea Celular , Cromatografía Liquida , Células HeLa , Humanos , Hidroxilación , Histona Demetilasas con Dominio de Jumonji , Lisina/metabolismo , Datos de Secuencia Molecular , Proteínas Nucleares/química , Procesamiento Proteico-Postraduccional , ARN Interferente Pequeño , Receptores de Superficie Celular/genética , Proteínas Recombinantes/metabolismo , Ribonucleoproteínas/química , Factor de Empalme U2AF , Espectrometría de Masas en Tándem , Tropomiosina/genética
17.
J Proteome Res ; 7(5): 1994-2006, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18361515

RESUMEN

Saliva is a body fluid with important functions in oral and general health. A consortium of three research groups catalogued the proteins in human saliva collected as the ductal secretions: 1166 identifications--914 in parotid and 917 in submandibular/sublingual saliva--were made. The results showed that a high proportion of proteins that are found in plasma and/or tears are also present in saliva along with unique components. The proteins identified are involved in numerous molecular processes ranging from structural functions to enzymatic/catalytic activities. As expected, the majority mapped to the extracellular and secretory compartments. An immunoblot approach was used to validate the presence in saliva of a subset of the proteins identified by mass spectrometric approaches. These experiments focused on novel constituents and proteins for which the peptide evidence was relatively weak. Ultimately, information derived from the work reported here and related published studies can be used to translate blood-based clinical laboratory tests into a format that utilizes saliva. Additionally, a catalogue of the salivary proteome of healthy individuals allows future analyses of salivary samples from individuals with oral and systemic diseases, with the goal of identifying biomarkers with diagnostic and/or prognostic value for these conditions; another possibility is the discovery of therapeutic targets.


Asunto(s)
Glándula Parótida/química , Proteoma/análisis , Saliva/química , Proteínas y Péptidos Salivales/análisis , Glándula Sublingual/química , Glándula Submandibular/química , Adulto , Proteínas Sanguíneas/análisis , Femenino , Humanos , Masculino , Persona de Mediana Edad , Datos de Secuencia Molecular , Análisis por Matrices de Proteínas , Lágrimas/química
18.
Biotechniques ; 43(5): 563, 565, 567 passim, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18072585

RESUMEN

Large-scale biology emerged out of the efforts to sequence genomes of important organisms. Based on resources created by whole genome sequencing, large-scale analyses of messenger RNA (mRNA) and protein expression are now possible. With the availability of large amounts of genomic sequence information, a convenient method for the identification and analysis of proteins based on proteolytic digestion into peptides emerged. Processes to fragment peptides using collision-activated dissociation (CAD) in tandem mass spectrometers and computer algorithms to match the tandem mass spectra of peptides to sequences in databases enable rapid identification of amino acid sequences, and hence proteins, present in mixtures. The inherent complexity of the peptide mixtures has necessitated improvements in methodology for mass spectrometry (MS) analysis of peptides.


Asunto(s)
Ingeniería de Proteínas/métodos , Proteínas/análisis , Cromatografía Liquida , Células HeLa , Humanos , Espectrometría de Masas , Ingeniería de Proteínas/tendencias , Proteínas/aislamiento & purificación
19.
Methods ; 35(3): 248-55, 2005 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15722221

RESUMEN

Multidimensional liquid chromatography techniques have been coupled to tandem mass spectrometry to provide a robust method to identify proteins in complex mixtures. Data acquisition is interfaced directly with search algorithms for identification through cross-correlation with databases. This review describes the most recent advances in methodologies for protein identification by mass spectrometry and describes the limitations of the application of the technologies.


Asunto(s)
Cromatografía Liquida/métodos , Biología Computacional/métodos , Espectrometría de Masas/métodos , Mapeo Peptídico/métodos , Proteómica/métodos , Algoritmos , Cromatografía Líquida de Alta Presión/métodos , Cromatografía Liquida/instrumentación , Bases de Datos de Proteínas , Electroforesis en Gel Bidimensional , Espectrometría de Masas/instrumentación , Péptidos , Proteínas/química , Proteoma , Análisis de Secuencia de Proteína , Programas Informáticos
20.
Curr Protoc Cell Biol ; Chapter 5: Unit 5.6, 2003 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18228436

RESUMEN

Liquid chromatography techniques have been successfully coupled with mass spectrometers to provide a robust method for the identification of proteins in mixtures. Chromatography can be performed in-line with the mass spectrometer and data acquisition can be directly interfaced with search algorithms for identification by correlation with databases.


Asunto(s)
Espectrometría de Masas/métodos , Proteínas/química , Cromatografía Liquida/métodos , Péptidos/análisis , Péptidos/química , Proteínas/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA