Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Cell ; 83(21): 3773-3786, 2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37734377

RESUMEN

Histone variants provide versatility in the basic unit of chromatin, helping to define dynamic landscapes and cell fates. Maintaining genome integrity is paramount for the cell, and it is intimately linked with chromatin dynamics, assembly, and disassembly during DNA transactions such as replication, repair, recombination, and transcription. In this review, we focus on the family of H3 variants and their dynamics in space and time during the cell cycle. We review the distinct H3 variants' specific features along with their escort partners, the histone chaperones, compiled across different species to discuss their distinct importance considering evolution. We place H3 dynamics at different times during the cell cycle with the possible consequences for genome stability. Finally, we examine how their mutation and alteration impact disease. The emerging picture stresses key parameters in H3 dynamics to reflect on how when they are perturbed, they become a source of stress for genome integrity.


Asunto(s)
Cromatina , Histonas , Histonas/genética , Histonas/metabolismo , Cromatina/genética , Ciclo Celular/genética , ADN , Chaperonas de Histonas/genética
2.
Semin Cell Dev Biol ; 135: 13-23, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35595602

RESUMEN

Histone variant H3.3 is incorporated into chromatin throughout the cell cycle and even in non-cycling cells. This histone variant marks actively transcribed chromatin regions with high nucleosome turnover, as well as silent pericentric and telomeric repetitive regions. In the past few years, significant progress has been made in our understanding of mechanisms involved in the transcription-coupled deposition of H3.3. Here we review how, during transcription, new H3.3 deposition intermingles with the fate of the old H3.3 variant and its recycling. First, we describe pathways enabling the incorporation of newly synthesized vs old H3.3 histones in the context of transcription. We then review the current knowledge concerning differences between these two H3.3 populations, focusing on their PTMs composition. Finally, we discuss the implications of H3.3 recycling for the maintenance of the transcriptional state and underline the emerging importance of H3.3 as a potent epigenetic regulator for both maintaining and switching a transcriptional state.


Asunto(s)
Cromatina , Histonas , Histonas/genética , Histonas/metabolismo , Cromatina/genética , Nucleosomas/genética
3.
PLoS Biol ; 19(7): e3000968, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34228701

RESUMEN

Centromere protein A (CENP-A) is a histone H3 variant that defines centromeric chromatin and is essential for centromere function. In most eukaryotes, CENP-A-containing chromatin is epigenetically maintained, and centromere identity is inherited from one cell cycle to the next. In the germ line of the holocentric nematode Caenorhabditis elegans, this inheritance cycle is disrupted. CENP-A is removed at the mitosis-to-meiosis transition and is reestablished on chromatin during diplotene of meiosis I. Here, we show that the N-terminal tail of CENP-A is required for the de novo establishment of centromeres, but then its presence becomes dispensable for centromere maintenance during development. Worms homozygous for a CENP-A tail deletion maintain functional centromeres during development but give rise to inviable offspring because they fail to reestablish centromeres in the maternal germ line. We identify the N-terminal tail of CENP-A as a critical domain for the interaction with the conserved kinetochore protein KNL-2 and argue that this interaction plays an important role in setting centromere identity in the germ line. We conclude that centromere establishment and maintenance are functionally distinct in C. elegans.


Asunto(s)
Caenorhabditis elegans/crecimiento & desarrollo , Proteína A Centromérica/genética , Centrómero , Impresión Genómica , Células Germinativas , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteína A Centromérica/química , Proteína A Centromérica/metabolismo , Cromatina/metabolismo , Cromosomas , Femenino , Homocigoto , Cinetocoros , Proteínas Asociadas a Microtúbulos/química , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Unión Proteica , Dominios Proteicos
4.
Cell ; 184(12): 3125-3142.e25, 2021 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-33930289

RESUMEN

The N6-methyladenosine (m6A) RNA modification is used widely to alter the fate of mRNAs. Here we demonstrate that the C. elegans writer METT-10 (the ortholog of mouse METTL16) deposits an m6A mark on the 3' splice site (AG) of the S-adenosylmethionine (SAM) synthetase pre-mRNA, which inhibits its proper splicing and protein production. The mechanism is triggered by a rich diet and acts as an m6A-mediated switch to stop SAM production and regulate its homeostasis. Although the mammalian SAM synthetase pre-mRNA is not regulated via this mechanism, we show that splicing inhibition by 3' splice site m6A is conserved in mammals. The modification functions by physically preventing the essential splicing factor U2AF35 from recognizing the 3' splice site. We propose that use of splice-site m6A is an ancient mechanism for splicing regulation.


Asunto(s)
Adenosina/análogos & derivados , Sitios de Empalme de ARN/genética , Empalme del ARN/genética , Factor de Empalme U2AF/metabolismo , Adenosina/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Caenorhabditis elegans/genética , Secuencia Conservada/genética , Dieta , Células HeLa , Humanos , Intrones/genética , Metionina Adenosiltransferasa , Metilación , Metiltransferasas/química , Ratones , Mutación/genética , Conformación de Ácido Nucleico , Unión Proteica , Precursores del ARN/química , Precursores del ARN/genética , Precursores del ARN/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Nuclear Pequeño , S-Adenosilmetionina , Transcriptoma/genética
5.
Nat Commun ; 10(1): 2529, 2019 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-31175278

RESUMEN

Substitution of lysine 27 with methionine in histone H3.3 is a recently discovered driver mutation of pediatric high-grade gliomas. Mutant cells show decreased levels and altered distribution of H3K27 trimethylation (H3K27me3). How these chromatin changes are established genome-wide and lead to tumorigenesis remains unclear. Here we show that H3.3K27M-mediated alterations in H3K27me3 distribution result in ectopic DNA replication and cell cycle progression of germ cells in Caenorhabditis elegans. By genetically inducing changes in the H3.3 distribution, we demonstrate that both H3.3K27M and pre-existing H3K27me3 act locally and antagonistically on Polycomb Repressive Complex 2 (PRC2) in a concentration-dependent manner. The heterochromatin changes result in extensive gene misregulation, and genetic screening identified upregulation of JNK as an underlying cause of the germcell aberrations. Moreover, JNK inhibition suppresses the replicative fate in human tumor-derived H3.3K27M cells, thus establishing C. elegans as a powerful model for the identification of potential drug targets for treatment of H3.3K27M tumors.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Ciclo Celular , Replicación del ADN , Regulación de la Expresión Génica , Histonas/metabolismo , Sistema de Señalización de MAP Quinasas , Animales , Neoplasias Encefálicas , Caenorhabditis elegans , Carcinogénesis , Cromatina , Regulación Neoplásica de la Expresión Génica , Células Germinativas/metabolismo , Glioma , Heterocromatina , Código de Histonas , Metilación , Complejo Represivo Polycomb 2/metabolismo
6.
Genetics ; 209(2): 551-565, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29636369

RESUMEN

Replication-independent variant histones replace canonical histones in nucleosomes and act as important regulators of chromatin function. H3.3 is a major variant of histone H3 that is remarkably conserved across taxa and is distinguished from canonical H3 by just four key amino acids. Most genomes contain two or more genes expressing H3.3, and complete loss of the protein usually causes sterility or embryonic lethality. Here, we investigate the developmental expression patterns of the five Caenorhabditis elegans H3.3 homologs and identify two previously uncharacterized homologs to be restricted to the germ line. Despite these specific expression patterns, we find that neither loss of individual H3.3 homologs nor the knockout of all five H3.3-coding genes causes sterility or lethality. However, we demonstrate an essential role for the conserved histone chaperone HIRA in the nucleosomal loading of all H3.3 variants. This requirement can be bypassed by mutation of the H3.3-specific residues to those found in H3. While even removal of all H3.3 homologs does not result in lethality, it leads to reduced fertility and viability in response to high-temperature stress. Thus, our results show that H3.3 is nonessential in C. elegans but is critical for ensuring adequate response to stress.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Respuesta al Choque Térmico , Histonas/metabolismo , Animales , Caenorhabditis elegans/crecimiento & desarrollo , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Células Germinativas/citología , Células Germinativas/metabolismo , Chaperonas de Histonas/genética , Chaperonas de Histonas/metabolismo , Histonas/genética , Infertilidad/genética , Nucleosomas/metabolismo
7.
Cell Biol Int ; 41(7): 706-715, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28035727

RESUMEN

The injury of adult skeletal muscle initiates series of well-coordinated events that lead to the efficient repair of the damaged tissue. Any disturbances during muscle myolysis or reconstruction may result in the unsuccessful regeneration, characterised by strong inflammatory response and formation of connective tissue, that is, fibrosis. The switch between proper regeneration of skeletal muscle and development of fibrosis is controlled by various factors. Amongst them are those belonging to the transforming growth factor ß family. One of the TGF-ß family members is TGF-ß1, a multifunctional cytokine involved in the regulation of muscle repair via satellite cells activation, connective tissue formation, as well as regulation of the immune response intensity. Here, we present the role of TGF-ß1 in myogenic differentiation and muscle repair. The understanding of the mechanisms controlling these processes can contribute to the better understanding of skeletal muscle atrophy and diseases which consequence is fibrosis disrupting muscle function.


Asunto(s)
Músculo Esquelético/fisiología , Regeneración/fisiología , Factor de Crecimiento Transformador beta1/fisiología , Animales , Humanos , Desarrollo de Músculos/fisiología , Músculo Esquelético/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo
8.
Muscle Nerve ; 55(3): 400-409, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27396429

RESUMEN

INTRODUCTION: Skeletal muscles are characterized by their unique ability to regenerate. Injury of a so-called fast-twitch muscle, extensor digitorum longus (EDL), results in efficient regeneration and reconstruction of the functional tissue. In contrast, slow-twitch muscle (soleus) fails to properly reconstruct and develops fibrosis. This study focuses on soleus and EDL muscle regeneration and associated inflammation. METHODS: We determined differences in the activity of neutrophils and M1 and M2 macrophages using flow cytometry and differences in the levels of proinflammatory cytokines using Western blotting and immunolocalization at different times after muscle injury. RESULTS: Soleus muscle repair is accompanied by increased and prolonged inflammation, as compared to EDL. The proinflammatory cytokine profile is different in the soleus and ED muscles. CONCLUSIONS: Muscle repair efficiency differs by muscle fiber type. The inflammatory response affects the repair efficiency of slow- and fast-twitch muscles. Muscle Nerve 55: 400-409, 2017.


Asunto(s)
Inflamación/etiología , Fibras Musculares de Contracción Rápida/fisiología , Fibras Musculares de Contracción Lenta/fisiología , Regeneración/fisiología , Acetiltransferasas/metabolismo , Animales , Citocinas/metabolismo , Citometría de Flujo , Laminina/metabolismo , Macrófagos/metabolismo , Masculino , Enfermedades Musculares/complicaciones , Cadenas Pesadas de Miosina/metabolismo , Neutrófilos/metabolismo , Neutrófilos/patología , Ratas , Factores de Tiempo , Proteína X Asociada a bcl-2/metabolismo
9.
RNA ; 22(3): 467-76, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26729921

RESUMEN

In mammalian cells under oxidative stress, the methionyl-tRNA synthetase (MetRS) misacylates noncognate tRNAs at frequencies as high as 10% distributed among up to 28 tRNA species. Instead of being detrimental for the cell, misincorporation of methionine residues in the proteome reduces the risk of oxidative damage to proteins, which aids the oxidative stress response. tRNA microarrays have been essential for the detection of the full pattern of misacylated tRNAs, but have limited capacity to investigate the misacylation and mistranslation mechanisms in live cells. Here we develop a dual-fluorescence reporter to specifically measure methionine misincorporation at glutamic acid codons GAA and GAG via tRNA(Glu) mismethionylation in human cells. Our method relies on mutating a specific Met codon in the active site of the fluorescent protein mCherry to a Glu codon that renders mCherry nonfluorescent when translation follows the genetic code. Mistranslation utilizing mismethionylated tRNA(Glu) restores fluorescence in proportion to the amount of misacylated tRNA(Glu). This cellular approach works well for both transient transfection and established stable HEK293 lines. It is rapid, straightforward, and well suited for high-throughput activity analysis under a wide range of physiological conditions. As a proof of concept, we apply this method to characterize the effect of human tRNA(Glu) isodecoders on mistranslation and discuss the implications of our findings.


Asunto(s)
Colorantes Fluorescentes , Metionina/genética , Biosíntesis de Proteínas , Secuencia de Bases , Humanos , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , ARN de Transferencia de Ácido Glutámico/química , ARN de Transferencia de Ácido Glutámico/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...