Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 9: 1340, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30294334

RESUMEN

Candeia (Eremanthus erythropappus (DC) McLeisch, Asteraceae) is a Brazilian tree, mainly occurring in the cerrado areas. From ethnobotanical information its essential oil is known to have wound healing and nociceptive properties. These properties are ascribed to result from a sesquiterpene alcohol, (-)-α-bisabolol, which is present at high concentrations in this oil. Bisabolol is highly valued by the cosmetic industry because of its antibacterial, anti-inflammatory, skin-smoothing and wound healing properties. Over the past decades, Candeia timber has been collected at large scale for bisabolol extraction from wild reserves and the species is thereby at risk of extinction. To support the development of breeding and nursing practices that would facilitate sustainable cultivation of Candeia, we identified a terpene synthase gene, EeBOS1, that appears to control biosynthesis (-)-α-bisabolol in the plant. Expression of this gene in E. coli showed that EeBOS1 protein is capable of producing (-)-α-bisabolol from farnesyl pyrophosphate in vitro. Analysis of gene expression in different tissues from Candeia plants in different life stages showed a high correlation of EeBOS1 expression and accumulation of (-)-α-bisabolol. This work is the first step to unravel the pathway toward (-)-α-bisabolol in Candeia, and in the further study of the control of (-)-α-bisabolol production.

2.
PLoS One ; 13(8): e0201996, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30080887

RESUMEN

Plants produce a wide range of secondary metabolites. Within a single species, chemotypes can be distinguished by the differences in the composition of the secondary metabolites. Herein, we evaluated Nectandra megapotamica (Spreng.) chemotypes and the balance of different classes of metabolites to verify how significant differences in plant metabolism are regarding chemotypes. We collected N. megapotamica leaves from eight adult plants in two Brazilian states. The essential oils and ethanol/water extracts were analyzed by GC-MS and LC-DAD-MS, respectively. Histochemical tests were performed, as well as chemical analyses of leaves from adaxial and abaxial foliar surfaces of N. megapotamica, and the stereochemistry of α-bisabolol was determined. Two different chemotypes, based on volatile compounds, were identified, distinguished by the presence of isospathulenol, α-bisabolol, ß-bisabolene, and (E)-nerolidol for chemotype A, and bicyclogermacrene and elemicin for chemotype B. A stereochemical analysis of chemotype A extract revealed (+)-α-bisabolol enantiomer. Histochemical tests of chemotypes showed similar results and suggested the presence of essential oil in idioblasts stained with the dye NADI. The analyses of chemotype A leaves by GC-MS revealed similar compositions for abaxial and adaxial surfaces, such pattern was also observed for chemotype B. Medium and high polarity metabolites showed high chemical similarities between the chemotypes, highlighting the presence of proanthocyanidins and glycosylated flavonoids (O- and C-glycosides). Thus, N. megapotamica produced distinct volatile chemotypes with highly conserved medium to high polarity compounds. Such results suggest that phenolic derivatives have a basal physiological function, while genetic or environmental differences lead to differentiation in volatile profiles of N. megapotamica.


Asunto(s)
Lauraceae/química , Lauraceae/metabolismo , Metaboloma , Metabolómica , Cromatografía Liquida , Cromatografía de Gases y Espectrometría de Masas , Histocitoquímica , Metabolómica/métodos , Sesquiterpenos Monocíclicos , Aceites Volátiles/química , Aceites Volátiles/metabolismo , Fitoquímicos/química , Fitoquímicos/metabolismo , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Sesquiterpenos/química , Sesquiterpenos/metabolismo
3.
J Chem Ecol ; 44(7-8): 711-726, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29978430

RESUMEN

Phorodon humuli (Damson-hop aphid) is one of the major pests of hops in the northern hemisphere. It causes significant yield losses and reduces hop quality and economic value. Damson-hop aphid is currently controlled with insecticides, but the number of approved pesticides is steadily decreasing. In addition, the use of insecticides almost inevitably results in the development of resistant aphid genotypes. An integrated approach to pest management in hop cultivation is therefore badly needed in order to break this cycle and to prevent the selection of strains resistant to the few remaining registered insecticides. The backbone of such an integrated strategy is the breeding of hop cultivars that are resistant to Damson-hop aphid. However, up to date mechanisms of hops resistance towards Damson-hop aphids have not yet been unraveled. In the experiments presented here, we used metabolite profiling followed by multivariate analysis and show that metabolites responsible for hop aroma and flavor (sesquiterpenes) in the cones can also be found in the leaves, long before the hop cones develop, and may play a role in resistance against aphids. In addition, aphid feeding induced a change in the metabolome of all hop genotypes particularly an increase in a number of oxidized compounds, which suggests this may be part of a resistance mechanism.


Asunto(s)
Áfidos/fisiología , Humulus/metabolismo , Humulus/parasitología , Metaboloma , Metabolómica , Animales , Resistencia a la Enfermedad , Cromatografía de Gases y Espectrometría de Masas/métodos , Genotipo , Interacciones Huésped-Parásitos , Humulus/genética , Humulus/crecimiento & desarrollo , Metabolómica/métodos , Fitomejoramiento , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/parasitología , Sesquiterpenos/metabolismo
4.
Plant Biotechnol J ; 16(12): 1997-2006, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-29682901

RESUMEN

Plants store volatile compounds in specialized organs. The properties of these storage organs prevent precarious evaporation and protect neighbouring tissues from cytotoxicity. Metabolic engineering of plants is often carried out in tissues such as leaf mesophyll cells, which are abundant and easily accessible by engineering tools. However, these tissues are not suitable for the storage of volatile and hydrophobic compound such as sesquiterpenes and engineered volatiles are often lost into the headspace. In this study, we show that the seeds of Arabidopsis thaliana, which naturally contain lipid bodies, accumulate sesquiterpenes upon engineered expression. Subsequently, storage of volatile sesquiterpenes was achieved in Nicotiana benthamiana leaf tissue, by introducing oleosin-coated lipid bodies through metabolic engineering. Hereto, different combinations of genes encoding diacylglycerol acyltransferases (DGATs), transcription factors (WRINKL1) and oleosins (OLE1), from the oil seed-producing species castor bean (Ricinus communis) and Arabidopsis, were assessed for their suitability to promote lipid body formation. Co-expression of α-bisabolol synthase with Arabidopsis DGAT1 and WRINKL1 and OLE1 from castor bean promoted storage of α-bisabolol in N. benthamiana mesophyll tissue more than 17-fold. A clear correlation was found between neutral lipids and storage of sesquiterpenes, using synthases for α-bisabolol, (E)-ß-caryophyllene and α-barbatene. The co-localization of neutral lipids and α-bisabolol was shown using microscopy. This work demonstrates that lipid bodies can be used as intracellular storage compartment for hydrophobic sesquiterpenes, also in the vegetative parts of plants, creating the possibility to improve yields of metabolic engineering strategies in plants.


Asunto(s)
Ingeniería Metabólica , Nicotiana/metabolismo , Hojas de la Planta/metabolismo , Sesquiterpenos/metabolismo , Transferasas Alquil y Aril/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Diacilglicerol O-Acetiltransferasa/genética , Gotas Lipídicas/metabolismo , Metabolismo de los Lípidos/genética , Lípidos/análisis , Ingeniería Metabólica/métodos , Sesquiterpenos Monocíclicos , Hojas de la Planta/química , Plantas Modificadas Genéticamente , Sesquiterpenos Policíclicos , Semillas/metabolismo , Nicotiana/genética
5.
Plant Biotechnol J ; 16(8): 1434-1445, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29331089

RESUMEN

Aphids are pests of chrysanthemum that employ plant volatiles to select host plants and ingest cell contents to probe host quality before engaging in prolonged feeding and reproduction. Changes in volatile and nonvolatile metabolite profiles can disrupt aphid-plant interactions and provide new methods of pest control. Chrysanthemol synthase (CHS) from Tanacetum cinerariifolium represents the first committed step in the biosynthesis of pyrethrin ester insecticides, but no biological role for the chrysanthemol product alone has yet been documented. In this study, the TcCHS gene was over-expressed in Chrysanthemum morifolium and resulted in both the emission of volatile chrysanthemol (ca. 47 pmol/h/gFW) and accumulation of a chrysanthemol glycoside derivative, identified by NMR as chrysanthemyl-6-O-malonyl-ß-D-glucopyranoside (ca. 1.1 mM), with no detrimental phenotypic effects. Dual-choice assays separately assaying these compounds in pure form and as part of the headspace and extract demonstrated independent bioactivity of both components against the cotton aphid (Aphis gossypii). Performance assays showed that the TcCHS plants significantly reduced aphid reproduction, consistent with disturbance of aphid probing activities on these plants as revealed by electropenetrogram (EPG) studies. In open-field trials, aphid population development was very strongly impaired demonstrating the robustness and high impact of the trait. The results suggest that expression of the TcCHS gene induces a dual defence system, with both repellence by chrysanthemol odour and deterrence by its nonvolatile glycoside, introducing a promising new option for engineering aphid control into plants.


Asunto(s)
Transferasas Alquil y Aril/metabolismo , Áfidos/patogenicidad , Chrysanthemum/enzimología , Chrysanthemum/parasitología , Proteínas de Plantas/metabolismo , Animales , Chrysanthemum/metabolismo , Glicósidos/metabolismo , Terpenos/metabolismo
6.
Mol Plant ; 8(3): 454-66, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25598143

RESUMEN

Plants produce numerous terpenes and much effort has been dedicated to the identification and characterization of the terpene biosynthetic genes. However, little is known about how terpenes are transported within the cell and from the cell into the apoplast. To investigate a putative role of vesicle fusion in this process, we used Agrobacterium tumefaciens-mediated transient coexpression in Nicotiana benthamiana of an MtVAMP721e-RNAi construct (Vi) with either a caryophyllene synthase or a linalool synthase, respectively. Headspace analysis of the leaves showed that caryophyllene or linalool emission increased about five-fold when N. benthamiana VAMP72 function was blocked. RNA sequencing and protein ubiquitination analysis of the agroinfiltrated N. benthamiana leaf extracts suggested that increased terpene emissions may be attributed to proteasome malfunction based on three observations: leaves with TPS+Vi showed (1) a higher level of a DsRed marker protein, (2) a higher level of ubiquitinated proteins, and (3) coordinated induced expression of multiple proteasome genes, presumably caused by the lack of proteasome-mediated feedback regulation. However, caryophyllene or linalool did not inhibit proteasome-related protease activity in the in vitro assays. While the results are not conclusive for a role of vesicle fusion in terpene transport, they do show a strong interaction between inhibition of vesicle fusion and ectopic expression of certain terpenes. The results have potential applications in metabolic engineering.


Asunto(s)
Nicotiana/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Interferencia de ARN , Proteínas SNARE/genética , Sesquiterpenos/metabolismo , Transferasas Alquil y Aril/genética , Regulación de la Expresión Génica de las Plantas , Medicago truncatula/genética , Ingeniería Metabólica , Hojas de la Planta/metabolismo , Plantas Modificadas Genéticamente/genética , Sesquiterpenos Policíclicos , Proteínas SNARE/metabolismo , Sesquiterpenos/química , Nicotiana/genética
7.
Plant Cell Environ ; 37(8): 1753-75, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24588680

RESUMEN

The chemical properties and diversity of volatile isoprenoids lends them to a broad variety of biological roles. It also lends them to a host of biotechnological applications, both by taking advantage of their natural functions and by using them as industrial chemicals/chemical feedstocks. Natural functions include roles as insect attractants and repellents, abiotic stress protectants in pathogen defense, etc. Industrial applications include use as pharmaceuticals, flavours, fragrances, fuels, fuel additives, etc. Here we will examine the ways in which researchers have so far found to exploit volatile isoprenoids using biotechnology. Production and/or modification of volatiles using metabolic engineering in both plants and microorganisms are reviewed, including engineering through both mevalonate and methylerythritol diphosphate pathways. Recent advances are illustrated using several case studies (herbivores and bodyguards, isoprene, and monoterpene production in microbes). Systems and synthetic biology tools with particular utility for metabolic engineering are also reviewed. Finally, we discuss the practical realities of various applications in modern biotechnology, explore possible future applications, and examine the challenges of moving these technologies forward so that they can deliver tangible benefits. While this review focuses on volatile isoprenoids, many of the engineering approaches described here are also applicable to non-isoprenoid volatiles and to non-volatile isoprenoids.


Asunto(s)
Ingeniería Metabólica , Plantas/química , Terpenos/química , Compuestos Orgánicos Volátiles/química , Biotecnología , Butadienos/química , Escherichia coli/química , Hemiterpenos/química , Redes y Vías Metabólicas , Monoterpenos/química , Pentanos/química , Saccharomyces cerevisiae/química , Biología Sintética , Biología de Sistemas
8.
Plant Signal Behav ; 8(12): e26626, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24084646

RESUMEN

Carbon signaling can override carbon supply in the regulation of growth. At least some of this regulation is imparted by the sugar signal trehalose 6-phosphate (T6P) through the protein kinase, SnRK1. This signaling pathway regulates biosynthetic processes involved in growth under optimal growing conditions. Recently, using a seedling system we showed that under sub-optimal conditions, such as cold, carbon signaling by T6P/ SnRK1 enables recovery of growth following relief of the stress. The T6P/ SnRK1 mechanism thus could be selected as a means of improving low temperature tolerance. High-throughput automated Fv/Fm measurements provide a potential means to screen for T6P/ SnRK1, and here we confirm through measurements of Fv/Fm in rosettes that T6P promotes low temperature tolerance and recovery during cold to warm transfer. Further, to better understand the coordination between sugars, trehalose pathway, and temperature-dependent growth, we examine the interrelationship between sugars, trehalose phosphate synthase (TPS), and trehalose phosphate phosphatase (TPP) gene expression and T6P content in seedlings. Sucrose, particularly when fed exogenously, correlated well with TPS1 and TPPB gene expression, suggesting that these enzymes are involved in maintaining carbon flux through the pathway in relation to sucrose supply. However, when sucrose accumulated to higher levels under low temperature and low N, TPS1 and TPPB expression were less directly related to sucrose; other factors may also contribute to regulation of TPS1 and TPPB expression under these conditions. TPPA expression was not related to sucrose content and all genes were not well correlated with endogenous glucose. Our work has implications for understanding acclimation to sink-limited growth conditions such as low temperature and for screening cold-tolerant genotypes with altered T6P/ SnRK1 signaling.


Asunto(s)
Frío , Redes y Vías Metabólicas/efectos de los fármacos , Desarrollo de la Planta/efectos de los fármacos , Sacarosa/farmacología , Trehalosa/metabolismo , Fluorescencia , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Redes y Vías Metabólicas/genética , Desarrollo de la Planta/genética , Fosfatos de Azúcar , Trehalosa/análogos & derivados
9.
PLoS One ; 8(9): e75223, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24098685

RESUMEN

Isoamylase-type debranching enzymes (ISAs) play an important role in determining starch structure. Amylopectin - a branched polymer of glucose - is the major component of starch granules and its architecture underlies the semi-crystalline nature of starch. Mutants of several species lacking the ISA1-subclass of isoamylase are impaired in amylopectin synthesis. Consequently, starch levels are decreased and an aberrant soluble glucan (phytoglycogen) with altered branch lengths and branching pattern accumulates. Here we use TAP (tandem affinity purification) tagging to provide direct evidence in Arabidopsis that ISA1 interacts with its homolog ISA2. No evidence for interaction with other starch biosynthetic enzymes was found. Analysis of the single mutants shows that each protein is destabilised in the absence of the other. Co-expression of both ISA1 and ISA2 Escherichia coli allowed the formation of the active recombinant enzyme and we show using site-directed mutagenesis that ISA1 is the catalytic subunit. The presence of the active isoamylase alters glycogen biosynthesis in E. coli, resulting in colonies that stain more starch-like with iodine. However, analysis of the glucans reveals that rather than producing an amylopectin like substance, cells expressing the active isoamylase still accumulate small amounts of glycogen together with a population of linear oligosaccharides that stain strongly with iodine. We conclude that for isoamylase to promote amylopectin synthesis it needs to act on a specific precursor (pre-amylopectin) generated by the combined actions of plant starch synthase and branching enzyme isoforms and when presented with an unsuitable substrate (i.e. E. coli glycogen) it simply degrades it.


Asunto(s)
Arabidopsis/enzimología , Sistema de la Enzima Desramificadora del Glucógeno/metabolismo , Isoamilasa/metabolismo , Complejos Multiproteicos/metabolismo , Secuencia de Bases , Cromatografía en Gel , Cromatografía por Intercambio Iónico , Cartilla de ADN/genética , Electroforesis en Gel de Poliacrilamida , Escherichia coli , Prueba de Complementación Genética , Glucógeno/biosíntesis , Glucógeno/metabolismo , Isoamilasa/genética , Isoamilasa/aislamiento & purificación , Microscopía Electrónica de Transmisión , Datos de Secuencia Molecular , Estabilidad Proteica , Subunidades de Proteína/metabolismo , Alineación de Secuencia , Análisis de Secuencia de ADN , Almidón/biosíntesis , Especificidad por Sustrato
10.
Plant Physiol ; 162(3): 1720-32, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23735508

RESUMEN

Trehalose 6-P (T6P) is a sugar signal in plants that inhibits SNF1-related protein kinase, SnRK1, thereby altering gene expression and promoting growth processes. This provides a model for the regulation of growth by sugar. However, it is not known how this model operates under sink-limited conditions when tissue sugar content is uncoupled from growth. To test the physiological importance of this model, T6P, SnRK1 activities, sugars, gene expression, and growth were measured in Arabidopsis (Arabidopsis thaliana) seedlings after transfer to cold or zero nitrogen compared with sugar feeding under optimal conditions. Maximum in vitro activities of SnRK1 changed little, but T6P accumulated up to 55-fold, correlating with tissue Suc content in all treatments. SnRK1-induced and -repressed marker gene expression strongly related to T6P above and below a threshold of 0.3 to 0.5 nmol T6P g(-1) fresh weight close to the dissociation constant (4 µm) of the T6P/ SnRK1 complex. This occurred irrespective of the growth response to Suc. This implies that T6P is not a growth signal per se, but through SnRK1, T6P primes gene expression for growth in response to Suc accumulation under sink-limited conditions. To test this hypothesis, plants with genetically decreased T6P content and SnRK1 overexpression were transferred from cold to warm to analyze the role of T6P/SnRK1 in relief of growth restriction. Compared with the wild type, these plants were impaired in immediate growth recovery. It is concluded that the T6P/SnRK1 signaling pathway responds to Suc induced by sink restriction that enables growth recovery following relief of limitations such as low temperature.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Fosfatos de Azúcar/metabolismo , Trehalosa/análogos & derivados , Arabidopsis/efectos de los fármacos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Metabolismo de los Hidratos de Carbono , Carbohidratos , Frío , Regulación de la Expresión Génica de las Plantas , Nitrógeno , Plantas Modificadas Genéticamente , Proteínas Serina-Treonina Quinasas/genética , Plantones , Sacarosa/metabolismo , Sacarosa/farmacología , Trehalosa/metabolismo
11.
Anal Bioanal Chem ; 403(5): 1353-60, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22451176

RESUMEN

A hydrophilic-interaction chromatography (HILIC) method coupled to electrospray ionization mass spectrometry (ESI-MS) was developed for the determination of trehalose-6-phophate (Tre6P) in Arabidopsis thaliana seedlings. The method was optimized for MS detection and separation of Tre6P from its isomers, such as sucrose-6-phosphate, by testing eluent pH, type of organic solvent and alkalinizer, and gradient conditions. Tre6P could be resolved from matrix components within 28 min by using a water-acetonitrile gradient (0.2 ml/min) at pH 12 with piperidine as alkalinizer. The method was validated for concentrations between 25 and 4,000 nM Tre6P in A. thaliana seedling extracts. Seedlings were extracted with consecutive liquid-liquid and solid-phase extractions, and analyzed with HILIC-MS. Obtained accuracy (80-120 %) and precision (<24 %) demonstrated the suitability of HILIC-MS for determining Tre6P level variations in plants. The limit of detection (LOD) was 3.5 nM Tre6P in extracts corresponding to 4.1 pmol.g(-1) fresh plant weight (FW). This is a considerable improvement with respect to anion-exchange chromatography (AEC)-MS (40 nM) and capillary electrophoresis-MS (80 nM). Furthermore, HILIC-MS analysis times were shorter than with AEC-MS (30 and 60 min, respectively). The applicability of the HILIC-MS method was demonstrated by the analysis of extracts from seedlings grown on medium containing 100 mM sorbitol or trehalose, resulting in mean Tre6P concentrations of 0.2 and 1.9 nmol.g(-1) FW, respectively. Similar concentrations were found with AEC-MS. HILIC-MS was also evaluated at a high flow rate (2.0 ml/min). This high-speed method resolved the Suc6P and Tre6P peaks within 3 min yielding a detection limit of 1.3 nM Tre6P.


Asunto(s)
Arabidopsis/química , Cromatografía Liquida/métodos , Espectrometría de Masa por Ionización de Electrospray/métodos , Fosfatos de Azúcar/análisis , Trehalosa/análogos & derivados , Plantones/química , Trehalosa/análisis
12.
Plant Physiol ; 158(3): 1241-51, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22247267

RESUMEN

Trehalose 6-phosphate (T6P) is an important regulator of plant metabolism and development. T6P content increases when carbon availability is high, and in young growing tissue, T6P inhibits the activity of Snf1-related protein kinase (SnRK1). Here, strong accumulation of T6P was found in senescing leaves of Arabidopsis (Arabidopsis thaliana), in parallel with a rise in sugar contents. To determine the role of T6P in senescence, T6P content was altered by expressing the bacterial T6P synthase gene, otsA (to increase T6P), or the T6P phosphatase gene, otsB (to decrease T6P). In otsB-expressing plants, T6P accumulated less strongly during senescence than in wild-type plants, while otsA-expressing plants contained more T6P throughout. Mature otsB-expressing plants showed a similar phenotype as described for plants overexpressing the SnRK1 gene, KIN10, including reduced anthocyanin accumulation and delayed senescence. This was confirmed by quantitative reverse transcription-polymerase chain reaction analysis of senescence-associated genes and genes involved in anthocyanin synthesis. To analyze if the senescence phenotype was due to decreased sugar sensitivity, the response to sugars was determined. In combination with low nitrogen supply, metabolizable sugars (glucose, fructose, or sucrose) induced senescence in wild-type and otsA-expressing plants but to a smaller extent in otsB-expressing plants. The sugar analog 3-O-methyl glucose, on the other hand, did not induce senescence in any of the lines. Transfer of plants to and from glucose-containing medium suggested that glucose determines senescence during late development but that the effects of T6P on senescence are established by the sugar response of young plants.


Asunto(s)
Arabidopsis/fisiología , Metabolismo de los Hidratos de Carbono , Hojas de la Planta/fisiología , Fosfatos de Azúcar/metabolismo , Trehalosa/análogos & derivados , Antocianinas/genética , Antocianinas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Carbono/metabolismo , Medios de Cultivo/metabolismo , Activación Enzimática , Escherichia coli/enzimología , Escherichia coli/genética , Escherichia coli/metabolismo , Flores/fisiología , Glucosa/metabolismo , Glucosiltransferasas/genética , Glucosiltransferasas/metabolismo , Fenotipo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Plantas Modificadas Genéticamente/fisiología , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal , Trehalosa/metabolismo
13.
Plant Physiol ; 157(1): 160-74, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21753116

RESUMEN

The strong regulation of plant carbon allocation and growth by trehalose metabolism is important for our understanding of the mechanisms that determine growth and yield, with obvious applications in crop improvement. To gain further insight on the growth arrest by trehalose feeding, we first established that starch-deficient seedlings of the plastidic phosphoglucomutase1 mutant were similarly affected as the wild type on trehalose. Starch accumulation in the source cotyledons, therefore, did not cause starvation and consequent growth arrest in the growing zones. We then screened the FOX collection of Arabidopsis (Arabidopsis thaliana) expressing full-length cDNAs for seedling resistance to 100 mm trehalose. Three independent transgenic lines were identified with dominant segregation of the trehalose resistance trait that overexpress the bZIP11 (for basic region/leucine zipper motif) transcription factor. The resistance of these lines to trehalose could not be explained simply through enhanced trehalase activity or through inhibition of bZIP11 translation. Instead, trehalose-6-phosphate (T6P) accumulation was much increased in bZIP11-overexpressing lines, suggesting that these lines may be insensitive to the effects of T6P. T6P is known to inhibit the central stress-integrating kinase SnRK1 (KIN10) activity. We confirmed that this holds true in extracts from seedlings grown on trehalose, then showed that two independent transgenic lines overexpressing KIN10 were insensitive to trehalose. Moreover, the expression of marker genes known to be jointly controlled by SnRK1 activity and bZIP11 was consistent with low SnRK1 or bZIP11 activity in seedlings on trehalose. These results reveal an astonishing case of primary metabolite control over growth by way of the SnRK1 signaling pathway involving T6P, SnRK1, and bZIP11.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal/efectos de los fármacos , Fosfatos de Azúcar/metabolismo , Trehalosa/análogos & derivados , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , ADN Complementario , Plantas Modificadas Genéticamente , Biosíntesis de Proteínas , Trehalosa/metabolismo
14.
New Phytol ; 191(3): 733-745, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21534971

RESUMEN

• The Arabidopsis basic region-leucine zipper transcription factor 11 (bZIP11) is known to be repressed by sucrose through a translational inhibition mechanism that requires the conserved sucrose control peptide encoded by the mRNA leader. The function of bZIP11 has been investigated in over-expression studies, and bZIP11 has been found to inhibit plant growth. The addition of sugar does not rescue the growth inhibition phenotype. Here, the function of the bZIP11 transcription factor was investigated. • The mechanism by which bZIP11 regulates growth was studied using large-scale and dedicated metabolic analysis, biochemical assays and molecular studies. • bZIP11 induction results in a reprogramming of metabolism and activation of genes involved in the metabolism of trehalose and other minor carbohydrates such as myo-inositol and raffinose. bZIP11 induction leads to reduced contents of the prominent growth regulatory molecule trehalose 6-phosphate (T6P). • The metabolic changes detected mimic in part those observed in carbon-starved plants. It is proposed that bZIP11 is a powerful regulator of carbohydrate metabolism that functions in a growth regulatory network that includes T6P and the sucrose non-fermenting-1 related protein kinase 1 (SnRK1).


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Sacarosa/metabolismo , Trehalosa/metabolismo , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Genes de Plantas/genética , Inositol/metabolismo , Leucina Zippers/genética , Raíces de Plantas/crecimiento & desarrollo , Regiones Promotoras Genéticas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Rafinosa/biosíntesis , Plantones/metabolismo , Transgenes/genética
15.
Plant Physiol ; 156(1): 373-81, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21402798

RESUMEN

Trehalose 6-phosphate (T6P) is a sugar signal that regulates metabolism, growth, and development and inhibits the central regulatory SNF1-related protein kinase1 (SnRK1; AKIN10/AKIN11). To better understand the mechanism in wheat (Triticum aestivum) grain, we analyze T6P content and SnRK1 activities. T6P levels changed 178-fold 1 to 45 d after anthesis (DAA), correlating with sucrose content. T6P ranged from 78 nmol g(-1) fresh weight (FW) pregrain filling, around 100-fold higher than previously reported in plants, to 0.4 nmol g(-1) FW during the desiccation stage. In contrast, maximum SnRK1 activity changed only 3-fold but was inhibited strongly by T6P in vitro. To assess SnRK1 activity in vivo, homologs of SnRK1 marker genes in the wheat transcriptome were identified using Wheat Estimated Transcript Server. SnRK1-induced and -repressed marker genes were expressed differently pregrain filling compared to grain filling consistent with changes in T6P. To investigate this further maternal and filial tissues were compared pre- (7 DAA) and during grain filling (17 DAA). Strikingly, in vitro SnRK1 activity was similar in all tissues in contrast to large changes in tissue distribution of T6P. At 7 DAA T6P was 49 to 119 nmol g(-1) FW in filial and maternal tissues sufficient to inhibit SnRK1; at 17 DAA T6P accumulation was almost exclusively endospermal (43 nmol g(-1) FW) with 0.6 to 0.8 nmol T6P g(-1) FW in embryo and pericarp. The data show a correlation between T6P and sucrose overall that belies a marked effect of tissue type and developmental stage on T6P content, consistent with tissue-specific regulation of SnRK1 by T6P in wheat grain.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Proteínas Serina-Treonina Quinasas/metabolismo , Semillas/metabolismo , Sacarosa/metabolismo , Fosfatos de Azúcar/metabolismo , Trehalosa/análogos & derivados , Triticum/metabolismo , Secuencia de Aminoácidos , Biología Computacional , Regulación del Desarrollo de la Expresión Génica , Datos de Secuencia Molecular , Especificidad de Órganos , Plantas Modificadas Genéticamente , Proteínas Serina-Treonina Quinasas/genética , Semillas/genética , Semillas/crecimiento & desarrollo , Sacarosa/análisis , Fosfatos de Azúcar/análisis , Trehalosa/análisis , Trehalosa/metabolismo , Triticum/genética , Triticum/crecimiento & desarrollo
16.
Plant Signal Behav ; 5(4): 386-92, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20139731

RESUMEN

Trehalose 6-phosphate (T6P), the precursor of trehalose, is a signaling molecule in plants with strong effects on metabolism, growth and development. We recently showed that in growing tissues T6P is an inhibitor of SnRK1 of the SNF1-related group of protein kinases. SnRK1 acts as transcriptional integrator in response to carbon and energy supply. In microarray experiments on seedlings of transgenic Arabidopsis with elevated T6P content we found that expression of SnRK1 marker genes was affected in a manner to be predicted by inhibition of SnRK1 by T6P in vivo. A large number of genes involved in reactions that utilize carbon, e.g., UDP-glucose dehydrogenase genes involved in cell wall synthesis, were upregulated. T6P was also found to affect developmental signaling pathways, probably in a SnRK1-independent manner. This includes upregulation of genes encoding UDP-glycosyltransferases that are involved in the glycosylation of hormones. In addition, genes involved in auxin response and light signaling were affected. Many of these genes belong to pathways that link the circadian clock to plant growth and development. The overall pattern of changes in gene expression supports a role for T6P in coordinating carbon supply with biosynthetic process involved in growth and development.

17.
Anal Biochem ; 389(1): 12-7, 2009 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-19275873

RESUMEN

A method for the detection of trehalose-6-phosphate (T6P) in tissue of the model plant Arabidopsis thaliana is presented. Liquid-liquid extraction (LLE) and mixed mode solid-phase extraction (SPE) were used for sample pretreatment followed by anion exchange chromatography (AEC) coupled with electrospray ionization mass spectrometry (MS) for highly selective quantitative analysis. LLE of plant material was performed with chloroform/acetonitrile/water (3:7:16, v/v/v) followed by SPE with Oasis MAX material, which significantly reduced the complexity of the extracts. On-line coupling of MS with gradient AEC using a sodium hydroxide eluent was accomplished with a postcolumn ion suppressor. The method allows specific quantification of T6P with good linearity for spiked plant extracts, from 80 nM to 1.3 microM (r(2)>0.98). The limit of detection in plant extracts was 40 nM. The recovery of the method was above 80% for relevant T6P levels. The method was applied to the determination of T6P in seedlings from four mutant A. thaliana lines (TRR1-4) resisting growth arrest caused by external supply of trehalose. Results reveal that T6P accumulation differed substantially in the four mutant lines and wild type (WT). It is concluded that the mutants circumvent the growth arrest observed in WT seedlings on 100mM trehalose by different mechanisms.


Asunto(s)
Arabidopsis/química , Cromatografía por Intercambio Iónico/métodos , Plantones/química , Espectrometría de Masa por Ionización de Electrospray/métodos , Fosfatos de Azúcar/química , Fosfatos de Azúcar/aislamiento & purificación , Trehalosa/análogos & derivados , Resinas de Intercambio Aniónico , Extracción en Fase Sólida , Trehalosa/química , Trehalosa/aislamiento & purificación
18.
Plant Physiol ; 149(4): 1860-71, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19193861

RESUMEN

Trehalose-6-phosphate (T6P) is a proposed signaling molecule in plants, yet how it signals was not clear. Here, we provide evidence that T6P functions as an inhibitor of SNF1-related protein kinase1 (SnRK1; AKIN10/AKIN11) of the SNF1-related group of protein kinases. T6P, but not other sugars and sugar phosphates, inhibited SnRK1 in Arabidopsis (Arabidopsis thaliana) seedling extracts strongly (50%) at low concentrations (1-20 microM). Inhibition was noncompetitive with respect to ATP. In immunoprecipitation studies using antibodies to AKIN10 and AKIN11, SnRK1 catalytic activity and T6P inhibition were physically separable, with T6P inhibition of SnRK1 dependent on an intermediary factor. In subsequent analysis, T6P inhibited SnRK1 in extracts of all tissues analyzed except those of mature leaves, which did not contain the intermediary factor. To assess the impact of T6P inhibition of SnRK1 in vivo, gene expression was determined in seedlings expressing Escherichia coli otsA encoding T6P synthase to elevate T6P or otsB encoding T6P phosphatase to decrease T6P. SnRK1 target genes showed opposite regulation, consistent with the regulation of SnRK1 by T6P in vivo. Analysis of microarray data showed up-regulation by T6P of genes involved in biosynthetic reactions, such as genes for amino acid, protein, and nucleotide synthesis, the tricarboxylic acid cycle, and mitochondrial electron transport, which are normally down-regulated by SnRK1. In contrast, genes involved in photosynthesis and degradation processes, which are normally up-regulated by SnRK1, were down-regulated by T6P. These experiments provide strong evidence that T6P inhibits SnRK1 to activate biosynthetic processes in growing tissues.


Asunto(s)
Proteínas de Arabidopsis/antagonistas & inhibidores , Arabidopsis/efectos de los fármacos , Arabidopsis/enzimología , Redes y Vías Metabólicas/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Fosfatos de Azúcar/farmacología , Trehalosa/análogos & derivados , Adenosina Trifosfato/farmacología , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Dominio Catalítico , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Glucosiltransferasas/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Extractos Vegetales/metabolismo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/enzimología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Plantones/efectos de los fármacos , Plantones/enzimología , Plantones/genética , Programas Informáticos , Factores de Transcripción/metabolismo , Trehalosa/farmacología
19.
Plant Cell ; 20(12): 3448-66, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19074683

RESUMEN

Several studies have suggested that debranching enzymes (DBEs) are involved in the biosynthesis of amylopectin, the major constituent of starch granules. Our systematic analysis of all DBE mutants of Arabidopsis thaliana demonstrates that when any DBE activity remains, starch granules are still synthesized, albeit with altered amylopectin structure. Quadruple mutants lacking all four DBE proteins (Isoamylase1 [ISA1], ISA2, and ISA3, and Limit-Dextrinase) are devoid of starch granules and instead accumulate highly branched glucans, distinct from amylopectin and from previously described phytoglycogen. A fraction of these glucans are present as discrete, insoluble, nanometer-scale particles, but the structure and properties of this material are radically altered compared with wild-type amylopectin. Superficially, these data support the hypothesis that debranching is required for amylopectin synthesis. However, our analyses show that soluble glucans in the quadruple DBE mutant are degraded by alpha- and beta-amylases during periods of net accumulation, giving rise to maltose and branched malto-oligosaccharides. The additional loss of the chloroplastic alpha-amylase AMY3 partially reverts the phenotype of the quadruple DBE mutant, restoring starch granule biosynthesis. We propose that DBEs function in normal amylopectin synthesis by promoting amylopectin crystallization but conclude that they are not mandatory for starch granule synthesis.


Asunto(s)
Arabidopsis/enzimología , Arabidopsis/metabolismo , Glicósido Hidrolasas/fisiología , Isoamilasa/fisiología , Almidón/biosíntesis , alfa-Amilasas/fisiología , Amilopectina/metabolismo , Arabidopsis/genética , Arabidopsis/ultraestructura , Microscopía por Crioelectrón , Glicósido Hidrolasas/genética , Isoamilasa/genética , Maltosa/metabolismo , Oligosacáridos/metabolismo , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Plantas Modificadas Genéticamente/ultraestructura , Espectroscopía Infrarroja por Transformada de Fourier , Almidón/genética , alfa-Amilasas/genética
20.
Funct Plant Biol ; 34(6): 465-473, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32689375

RESUMEN

The aim of this article is to provide an overview of current models of starch breakdown in leaves. We summarise the results of our recent work focusing on Arabidopsis, relating them to other work in the field. Early biochemical studies of starch containing tissues identified numerous enzymes capable of participating in starch degradation. In the non-living endosperms of germinated cereal seeds, starch breakdown proceeds by the combined actions of α-amylase, limit dextrinase (debranching enzyme), ß-amylase and α-glucosidase. The activities of these enzymes and the regulation of some of the respective genes on germination have been extensively studied. In living plant cells, additional enzymes are present, such as α-glucan phosphorylase and disproportionating enzyme, and the major pathway of starch breakdown appears to differ from that in the cereal endosperm in some important aspects. For example, reverse-genetic studies of Arabidopsis show that α-amylase and limit-dextrinase play minor roles and are dispensable for starch breakdown in leaves. Current data also casts doubt on the involvement of α-glucosidase. In contrast, several lines of evidence point towards a major role for ß-amylase in leaves, which functions together with disproportionating enzyme and isoamylase (debranching enzyme) to produce maltose and glucose. Furthermore, the characterisation of Arabidopsis mutants with elevated leaf starch has contributed to the discovery of previously unknown proteins and metabolic steps in the pathway. In particular, it is now apparent that glucan phosphorylation is required for normal rates of starch mobilisation to occur, although a detailed understanding of this step is still lacking. We use this review to give a background to some of the classical genetic mutants that have contributed to our current knowledge.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...