Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Sports Physiol Perform ; 18(10): 1169-1178, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37666497

RESUMEN

OBJECTIVES: Currently, there are no guidelines for implementing the monitoring of menstrual status, including the natural menstrual cycle (NC) or oral contraception (OC), in a sport setting. We aimed to provide a feasible, on-field methodological approach for monitoring NC and OC in female athletes. METHODS: We developed a smartphone app with daily questionnaires to monitor both NC and OC phases in 19 elite female soccer players (23.7 [4.4] y) over 7 months. Adherence and compliance were evaluated. The NC and OC phases were based on calendar data to establish an individual menstrual profile for each athlete. RESULTS: The initial questionnaire revealed that the vast majority of female players (80%) were interested in monitoring their menstrual status. The online monitoring yielded high athlete adherence (87.0% [14.2%]) with a slight decrease over the winter break and at the end of the championship, which necessitated adaptations to promote compliance. Monitoring identified the specific menstrual pattern of each athlete and highlighted large interindividual variability. CONCLUSION: This study assesses, for the first time, the interest of female players in monitoring their menstrual status. It provides a new methodological approach, as well as guidelines for optimizing on-field monitoring. It also anticipates some obstacles sport staff may encounter when trying to implement such follow-up. It is essential to better understand the menstrual profile of athletes and determine its potential impacts on well-being and performance.


Asunto(s)
Aplicaciones Móviles , Deportes , Femenino , Humanos , Ciclo Menstrual , Atletas , Estaciones del Año
2.
Mol Ther Methods Clin Dev ; 27: 295-308, 2022 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-36320410

RESUMEN

Wolfram syndrome (WS) is a rare neurodegenerative disease resulting in deafness, optic atrophy, diabetes, and neurological disorders. Currently, no treatment is available for patients. The mutated gene, WFS1, encodes an endoplasmic reticulum (ER) protein, Wolframin. We previously reported that Wolframin regulated the ER-mitochondria Ca2+ transfer and mitochondrial activity by protecting NCS1 from degradation in patients' fibroblasts. We relied on a zebrafish model of WS, the wfs1ab KO line, to analyze the functional and behavioral impact of NCS1 overexpression as a novel therapeutic strategy. The wfs1ab KO line showed an increased locomotion in the visual motor and touch-escape responses. The absence of wfs1 did not impair the cellular unfolded protein response, in basal or tunicamycin-induced ER stress conditions. In contrast, metabolic analysis showed an increase in mitochondrial respiration in wfs1ab KO larvae. Interestingly, overexpression of NCS1 using mRNA injection restored the alteration of mitochondrial respiration and hyperlocomotion. Taken together, these data validated the wfs1ab KO zebrafish line as a pertinent experimental model of WS and confirmed the therapeutic potential of NCS1. The wfs1ab KO line therefore appeared as an efficient model to identify novel therapeutic strategies, such as gene or pharmacological therapies targeting NCS1 that will correct or block WS symptoms.

3.
Hum Mol Genet ; 31(16): 2711-2727, 2022 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-35325133

RESUMEN

Wolfram syndrome (WS) is a rare genetic disease characterized by diabetes, optic atrophy and deafness. Patients die at 35 years of age, mainly from respiratory failure or dysphagia. Unfortunately, there is no treatment to block the progression of symptoms and there is an urgent need for adequate research models. Here, we report on the phenotypical characterization of two loss-of-function zebrafish mutant lines: wfs1aC825X and wfs1bW493X. We observed that wfs1a deficiency altered the size of the ear and the retina of the fish. We also documented a decrease in the expression level of unfolded protein response (UPR) genes in basal condition and in stress condition, i.e. after tunicamycin treatment. Interestingly, both mutants lead to a decrease in their visual function measured behaviorally. These deficits were associated with a decrease in the expression level of UPR genes in basal and stress conditions. Interestingly, basal, ATP-linked and maximal mitochondrial respirations were transiently decreased in the wfs1b mutant. Taken together, these zebrafish lines highlight the critical role of wfs1a and wfs1b in UPR, mitochondrial function and visual physiology. These models will be useful tools to better understand the cellular function of Wfs1 and to develop novel therapeutic approaches for WS.


Asunto(s)
Atrofia Óptica , Síndrome de Wolfram , Animales , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Mutación , Atrofia Óptica/genética , Fenotipo , Síndrome de Wolfram/genética , Síndrome de Wolfram/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo
4.
Front Cell Dev Biol ; 9: 675517, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34095146

RESUMEN

Retinitis pigmentosa (RP) is one of the most common forms of inherited retinal degeneration with 1/4,000 people being affected. The vision alteration primarily begins with rod photoreceptor degeneration, then the degenerative process continues with cone photoreceptor death. Variants in 71 genes have been linked to RP. One of these genes, PDE6a is responsible for RP43. To date no treatment is available and patients suffer from pronounced visual impairment in early childhood. We used the novel zebrafish pde6aQ70X mutant, generated by N-ethyl-N-nitrosourea at the European Zebrafish Resource Centre, to better understand how PDE6a loss of function leads to photoreceptor alteration. Interestingly, zebrafish pde6aQ70X mutants exhibited impaired visual function at 5 dpf as evidenced by the decrease in their visual motor response (VMR) compared to pde6a WT larvae. This impaired visual function progressed with time and was more severe at 21 dpf. These modifications were associated with an alteration of rod outer segment length at 5 and 21 dpf. In summary, these findings suggest that rod outer segment shrinkage due to Pde6a deficiency begins very early in zebrafish, progresses with time. The zebrafish pde6aQ70X mutant represents an ideal model of RP to screen relevant active small molecules that will block the progression of the disease.

5.
Artículo en Inglés | MEDLINE | ID: mdl-18334353

RESUMEN

An experimental setup based on the electrical excitation of a piezoelectric sample is proposed for resonant ultrasound spectroscopy measurements. The detection of the mechanical vibrations is performed by means of a laser interferometer. At the same time, the free vibrations of piezoelectric parallelepipeds of tetragonal and hexagonal symmetries are modeled taking into account the effect of the sample metalization. The paper presents the full elastic, piezoelectric and dielectric tensors of two PMN-34.5%PT ceramic and PZN-12%PT single crystal cubes.

6.
Artículo en Inglés | MEDLINE | ID: mdl-17091833

RESUMEN

This paper presents a new method to compute the piezoelastic properties of multidomain single crystals from the single-domain constants. Based on a quasi static assumption, a PMN-chiPT multidomain is defined as a periodic medium with a lattice composed of layers of two domains in a twin structure. Such a structure is assumed to have charged domain walls that imply specific lattice media and boundary conditions. A numerical computation has been performed for a PMN-33PT single crystal in the rhombohedral phase. The effective elastic, piezoelectric, and dielectric constants of the macroscopic structure have been calculated, as well as the wave velocities in different configurations of domain patterns.

7.
Artículo en Inglés | MEDLINE | ID: mdl-16615572

RESUMEN

The objective of this study is to understand the role of residual stress in piezoelectric layers in order to predict the performance of integrated structures. This is of particular importance in thick or thin film technology. Considering a bulk piezoelectric material, the Christoffel equation for a piezoelectric material is modified to take into account a uniform residual stress on a given cross section. A numerical study of its influence is carried out on the slowness curves and coupling coefficients of a lithium niobate material. In a second part, modified Christoffel tensor is used to calculate the dispersion curves of Lamb waves in a piezoelectric plate. The Lamb modes are found to be sensitive to the residual stress. In particular, it is shown how the behavior of the first Lamb modes is modified with residual stress. In a third part, these results are extended to a piezoelectric film laid down on a substrate in order to model the importance of these phenomena on the behavior of an integrated structure. The numerical study of guided waves in a lithium niobate plate is performed first, then the case of a lithium niobate film laid down on a silicon substrate is considered.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...