Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Int ; 172: 107738, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36641836

RESUMEN

The Anthropocene is characterized by dramatic ecosystem changes driven by human activities. The impact of these activities can be assessed by different geochemical and paleontological proxies. However, each of these proxies provides only a fragmentary insight into the effects of anthropogenic impacts. It is highly challenging to reconstruct, with a holistic view, the state of the ecosystems from the preindustrial period to the present day, covering all biological components, from prokaryotes to multicellular eukaryotes. Here, we used sedimentary ancient DNA (sedaDNA) archives encompassing all trophic levels of biodiversity to reconstruct the two century-natural history in Bagnoli-Coroglio (Gulf of Pozzuoli, Tyrrhenian Sea), one of the most polluted marine-coastal sites in Europe. The site was characterized by seagrass meadows and high eukaryotic diversity until the beginning of the 20th century. Then, the ecosystem completely changed, with seagrasses and associated fauna as well as diverse groups of planktonic and benthic protists being replaced by low diversity biota dominated by dinophyceans and infaunal metazoan species. The sedaDNA analysis revealed a five-phase evolution of the area, where changes appear as the result of a multi-level cascade effect of impacts associated with industrial activities, urbanization, water circulation and land-use changes. The sedaDNA allowed to infer reference conditions that must be considered when restoration actions are to be implemented.


Asunto(s)
Biodiversidad , Ecosistema , Humanos , Animales , Biota , Europa (Continente) , Actividades Humanas , Sedimentos Geológicos
2.
Environ Monit Assess ; 194(11): 814, 2022 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-36131187

RESUMEN

In this study, site-specific natural background levels (NBLs) were determined for 18 elements (Al, As, Be, Cd, Co, Cu, Cr, Fe, Hg, K, Mn, Mo, Ni, Pb, Tl, U, V, and Zn) in two sediment cores collected offshore the Bagnoli-Coroglio brownfield site (Gulf of Pozzuoli, southern Italy) to accurately assess the degree of contamination and the historical trends in Heavy Metals (HMs) enrichment. This objective was pursued taking in account the high temporal and spatial variability of the geochemical properties of the area due to the local geothermal activity. Moreover, the temporal variation of Polycyclic Aromatic Hydrocarbons (PAHs) was investigated.226Ra was used as an extraordinary marker to confirm 210Pb dating. It especially allowed defining the geochronological framework of the sediment core closer the brownfield up to around 1500, providing compelling support to correlate the investigated elements' occurrences with natural geogenic dynamic. Sediment samples were accurately dated and analyzed for chemical and particle size composition. The contamination factor (Cf) and the pollution load index (PLI) showed very high enrichment of Cd, Cu, Hg, Pb, and Zn. The contamination profiles of HMs and PAHs follow the same pattern in both sediment cores, increasing from deep to upper layers. The highest contamination levels for HMs and PAHs were observed between 10 and 30 cm, corresponding to the periods of most intense industrial activity. Decreasing trends of pollutants were observed in the surface layers (0-10 cm), probably affected by a natural attenuation process due to the cessation of industrial activities.


Asunto(s)
Mercurio , Metales Pesados , Hidrocarburos Policíclicos Aromáticos , Contaminantes Químicos del Agua , Cadmio , Monitoreo del Ambiente , Sedimentos Geológicos/química , Plomo , Mercurio/análisis , Metales Pesados/análisis , Medición de Riesgo , Contaminantes Químicos del Agua/análisis
3.
Chemosphere ; 258: 127435, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32947671

RESUMEN

Isotopic composition of mercury (Hg) in marine organisms and sediment cores was used to identify sources and reconstruct historical trends of contamination in the coastal-marine area of Rosignano Solvay (Italy), affected by Hg pollution from a chlor-alkali plant on the near land. Sediments show a wide range of Hg concentration and Hg isotope signatures. Particularly, coupled Hg concentration and δ202Hg values trace inputs from different sources. The two depth-profiles clearly indicate three distinct periods: "pre-industrial" (before 1941), "industrial" (between 1941 and 2007) and "post-industrial" (after 2007) ages. This is also corroborated by sediment chronology, using 210Pb dating method, validated through 137Cs. Marine organisms are characterized by Hg isotope signatures comparable to "post-industrial" surface sediments. Notably, specimens of Mullus spp. evidence isotope composition comparable to the "industrial" sediments, thus suggesting a still active role of those sediments as source of Hg for the benthic fish compartment. The small amount of MIF and the Δ199Hg/Δ201Hg ratio recorded in organisms are reasonably consistent with limited processes of MMHg demethylation in the water column.


Asunto(s)
Mercurio/análisis , Contaminantes Químicos del Agua/análisis , Animales , Organismos Acuáticos , Monitoreo del Ambiente , Contaminación Ambiental , Peces , Sedimentos Geológicos , Industrias , Isótopos , Italia , Isótopos de Mercurio/análisis
4.
Sci Total Environ ; 647: 334-341, 2019 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-30081370

RESUMEN

In continental margins, canyons appear to act as natural conduits of sediments and organic matter from the shelf to deep basins, providing an efficient physical pathway for transport and accumulation of particles with their associated land-produced contaminants. However, these mechanisms have not been yet sufficiently explored by geochemical markers. The continental slope of the south Sardinia has been used as a natural laboratory for investigating mechanisms and times of transfer dynamics of contaminants from land to sea and from shelf to deep sea through an articulated system of submarine canyons. Here, dynamics of contaminants have been investigated in a pilot area of the central Mediterranean basin (Gulf of Cagliari, S Sardinia) where important industrial plants are sited since beginning of the last century. Five sediment cores dated by 210Pb and 137Cs reveal: i) a complex dynamics of organic and inorganic contaminants from point source areas on land to the deep sea and ii) a crucial role played by canyons and bottom morphology as primary pathway conveying sediments and associated contaminants from sources to very far deep sea environments. In particular, this study provides new integrated tools to properly understand mechanisms of connection between coastal sectors and deep sea. This is challenging mostly in regions where coastal pollution could represent critical threats for larger areas of the Mediterranean Sea.

5.
Sci Total Environ ; 609: 1114-1125, 2017 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-28787785

RESUMEN

Settling fluxes and sediment accumulation rates in coastal Tema Harbour (Ghana) were investigated by the combined analyses of results in sediment traps and sediment cores. Sediment traps were deployed at 5 stations within the Tema Harbour at two sampling depths and were retrieved every two weeks till the end of 12weeks to estimate the Settling Fluxes (SFs). Four sediment cores from the harbour were analysed for their radioactivity (7Be, 234Th, 210Pb, 212Pb, 226Ra, 40K and 137Cs) profiles to quantify Sediment Accumulation Rates (SARs). The sediment cores exhibited variable bulk density profiles, indicating highly dynamic and non-steady sedimentation conditions. 7Be-derived gross-estimates of very recent SARs using the constant flux-constant sedimentation (CF-CS) model were in the range of 2.5-9.0g·cm-2·y-1. These values were much lower than the estimated average SFs (15.2-53.8g·cm-2·y-1), indicating sediment resuspension plays an important role. On a decadal time scale, conventional 210Pb sediment dating models did not allow any estimation of SARs in the Tema Harbour. Thus, the 210Pb-based TERESA model was applied to depict a reliable scenario for sedimentation with time-averaged SARs in the range of 1.4-3.0g·cm-2·y-1 and fluxes of matter contributed by the marine inflow and local sources. Sediment accretion rates of 1.7-3cm·y-1 were also inferred, which may pose a moderate problem of sustainability for the Tema Harbour. This study reveals how the geochemical behaviour of different radionuclides with Gamma spectrometry in the marine environment can be used to obtain reliable information on the complex dynamics of Suspended Particulate Matter (SPM), even in a very disturbed and anthropic environment as a coastal harbour area where (1) conventional 210Pb-based dating methods fail and (2) the use of sediment traps and 234Th and 7Be profiles in sediment cores show serious constraints.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...