Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Med Sci Sports Exerc ; 55(1): 46-54, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36069865

RESUMEN

PURPOSE: This study aimed to investigate the modulation of circulating exosome-like extracellular vesicles (ELVs) after 6 wk of sprint interval training (SIT) at sea level and at 2000, 3000, and 4000 m. METHODS: Thirty trained endurance male athletes (18-35 yr) participated in a 6-wk SIT program (30-s all-out sprint, 4-min 30-s recovery; 4-9 repetitions, 2 sessions per week) at sea level ( n = 8), 2000 m (fraction of inspired oxygen (F io2 ) 0.167, n = 8), 3000 m (F io2 0.145, n = 7), or 4000 m (F io2 0.13, n = 7). Venous blood samples were taken before and after the training period. Plasma ELVs were isolated by size exclusion chromatography, counted by nanoparticle tracking analysis, and characterized according to international standards. Candidate ELV microRNAs (miRNAs) were quantified by real-time polymerase chain reaction. RESULTS: When the three hypoxic groups were analyzed separately, only very minor differences could be detected in the levels of circulating particles, ELV markers, or miRNA. However, the levels of circulating particles increased (+262%) after training when the three hypoxic groups were pooled, and tended to increase at sea level (+65%), with no difference between these two groups. A trend to an increase was observed for the two ELV markers, TSG101 (+65%) and HSP60 (+441%), at sea level, but not in hypoxia. Training also seemed to decrease the abundance of miR-23a-3p and to increase the abundance of miR-21-5p in hypoxia but not at sea level. CONCLUSIONS: A 6-wk SIT program tended to increase the basal levels of circulating ELVs when performed at sea level but not in hypoxia. In contrast, ELV miRNA cargo seemed to be modulated in hypoxic conditions only. Further research should explore the potential differences in the origin of ELVs between normoxic and local and systemic hypoxic conditions.


Asunto(s)
Vesículas Extracelulares , Entrenamiento de Intervalos de Alta Intensidad , MicroARNs , Humanos , Masculino , Altitud , Exosomas , Hipoxia , Adolescente , Adulto Joven , Adulto
2.
Biomedicines ; 10(10)2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-36289847

RESUMEN

Extracellular vesicles are spherical subcellular structures delimited by a lipid bilayer and released by most cells in the human body. They are loaded with a myriad of molecules (i.e., nucleic acids and proteins) depending on their cell of origin and provide the ability to transmit a message to surrounding or distant target cells. In several organs, including the thyroid, abundant recent literature reports that extracellular vesicles are responsible for intercellular communication in physiological and pathological processes, and that their utilization as a potential biomarker of pathological states (i.e., cancer, autoimmune diseases) or as therapeutic delivery vehicles promise clinical options. In this review, we present the current knowledge and understanding regarding the role of extracellular vesicles in developing thyroid diseases and diagnosis.

3.
Cancers (Basel) ; 14(19)2022 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-36230610

RESUMEN

Papillary thyroid carcinoma (PTC) is the most frequent histological subtype of thyroid cancers (TC), and BRAFV600E genetic alteration is found in 60% of this endocrine cancer. This oncogene is associated with poor prognosis, resistance to radioiodine therapy, and tumor progression. Histological follow-up by anatomo-pathologists revealed that two-thirds of surgically-removed thyroids do not present malignant lesions. Thus, continued fundamental research into the molecular mechanisms of TC downstream of BRAFV600E remains central to better understanding the clinical behavior of these tumors. To study PTC, we used a mouse model in which expression of BRAFV600E was specifically switched on in thyrocytes by doxycycline administration. Upon daily intraperitoneal doxycycline injection, thyroid tissue rapidly acquired histological features mimicking human PTC. Transcriptomic analysis revealed major changes in immune signaling pathways upon BRAFV600E induction. Multiplex immunofluorescence confirmed the abundant recruitment of macrophages, among which a population of LYVE-1+/CD206+/STABILIN-1+ was dramatically increased. By genetically inactivating the gene coding for the scavenger receptor STABILIN-1, we showed an increase of CD8+ T cells in this in situ BRAFV600E-dependent TC. Lastly, we demonstrated the presence of CD206+/STABILIN-1+ macrophages in human thyroid pathologies. Altogether, we revealed the recruitment of immunosuppressive STABILIN-1 macrophages in a PTC mouse model and the interest to further study this macrophage subpopulation in human thyroid tissues.

4.
Endocr Relat Cancer ; 29(7): 389-401, 2022 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-35521768

RESUMEN

Differential diagnosis of thyroid cancer and benign nodules is still one of the most challenging issues in the field of endocrinology. To overcome overdiagnosis of papillary thyroid carcinomas (PTC) and the consecutive overtreatment of multinodular diseases, the search for easily accessible, sensitive and accurate biomarkers is critical. Several micro-RNAs (miRNAs) freely circulating in peripheral blood or enclosed in extracellular vesicles (EVs) have been proposed as potential biomarkers from non-invasive liquid biopsies. However, protocols are rarely comparable and conflicting data exist in the literature. In this work, we aimed to assess the diagnostic value of six micro-RNAs by comparing their expression in thyroid tissue to their abundance in bulk plasma and in plasma-EVs, before and after thyroid surgery. Plasma-EVs were isolated using a sequential density- and size-based fractionation, followed by in-depth characterization, confirming EV purity. Micro-RNA levels were measured by RT-qPCR in thyroid tissue, plasma and plasma-EVs. Among the six candidates, only miR-146b-5p and miR-21a-5p displayed a significant differential abundance in purified plasma-derived EVs from patients with PTC and benign disease. However, no difference could be demonstrated in bulk plasma through our cohort of patients. Overall, our work supports the use of a well-defined protocol of plasma-EV miRNAs purification for biomarker discovery, rather than the use of freely circulating miRNAs in bulk plasma. Our work also demonstrates that standardized pre-analytical and analytical procedures as well as optimized EV-miRNAs detection methods are essential.


Asunto(s)
Vesículas Extracelulares , MicroARNs , Neoplasias de la Tiroides , Biomarcadores , Biomarcadores de Tumor/metabolismo , Vesículas Extracelulares/metabolismo , Humanos , MicroARNs/genética , Cáncer Papilar Tiroideo/metabolismo , Neoplasias de la Tiroides/patología
5.
Biomedicines ; 10(4)2022 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-35453506

RESUMEN

Papillary thyroid cancer (PTC) is the most common endocrine malignancy for which diagnosis and recurrences still challenge clinicians. New perspectives to overcome these issues could come from the study of extracellular vesicle (EV) populations and content. Here, we aimed to elucidate the heterogeneity of EVs circulating in the tumor and the changes in their microRNA content during cancer progression. Using a mouse model expressing BRAFV600E, we isolated and characterized EVs from thyroid tissue by ultracentrifugations and elucidated their microRNA content by small RNA sequencing. The cellular origin of EVs was investigated by ExoView and that of deregulated EV-microRNA by qPCR on FACS-sorted cell populations. We found that PTC released more EVs bearing epithelial and immune markers, as compared to the healthy thyroid, so that changes in EV-microRNAs abundance were mainly due to their deregulated expression in thyrocytes. Altogether, our work provides a full description of in vivo-derived EVs produced by, and within, normal and cancerous thyroid. We elucidated the global EV-microRNAs signature, the dynamic loading of microRNAs in EVs upon BRAFV600E induction, and their cellular origin. Finally, we propose that thyroid tumor-derived EV-microRNAs could support the establishment of a permissive immune microenvironment.

6.
Am J Physiol Regul Integr Comp Physiol ; 322(2): R112-R122, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34907783

RESUMEN

The purpose of this study is to investigate exosome-like vesicle (ELV) plasma concentrations and markers of multivesicular body (MVB) biogenesis in skeletal muscle in response to acute exercise. Seventeen healthy [body mass index (BMI): 23.5 ± 0.5 kg·m-2] and 15 prediabetic (BMI: 27.3 ± 1.2 kg·m-2) men were randomly assigned to two groups performing an acute cycling bout in normoxia or hypoxia ([Formula: see text] 14.0%). Venous blood samples were taken before (T0), during (T30), and after (T60) exercise, and biopsies from m. vastus lateralis were collected before and after exercise. Plasma ELVs were isolated by size exclusion chromatography, counted by nanoparticle tracking analysis (NTA), and characterized according to international standards, followed by expression analyses of canonical ELV markers in skeletal muscle. In the healthy normoxic group, the total number of particles in the plasma increased during exercise from T0 to T30 (+313%) followed by a decrease from T30 to T60 (-53%). In the same group, an increase in TSG101, CD81, and HSP60 protein expression was measured after exercise in plasma ELVs; however, in the prediabetic group, the total number of particles in the plasma was not affected by exercise. The mRNA content of TSG101, ALIX, and CD9 was upregulated in skeletal muscle after exercise in normoxia, whereas CD9 and CD81 were downregulated in hypoxia. ELV plasma abundance increased in response to acute aerobic exercise in healthy subjects in normoxia, but not in prediabetic subjects, nor in hypoxia. Skeletal muscle analyses suggested that this tissue did not likely play a major role of the exercise-induced increase in circulating ELVs.


Asunto(s)
Ejercicio Físico , Vesículas Extracelulares/metabolismo , Hipoxia/sangre , Cuerpos Multivesiculares/metabolismo , Contracción Muscular , Estado Prediabético/sangre , Músculo Cuádriceps/metabolismo , Adulto , Ciclismo , Proteínas de Unión al Calcio/sangre , Estudios de Casos y Controles , Proteínas de Ciclo Celular/sangre , Proteínas de Unión al ADN/sangre , Complejos de Clasificación Endosomal Requeridos para el Transporte/sangre , Humanos , Hipoxia/diagnóstico , Hipoxia/fisiopatología , Masculino , Persona de Mediana Edad , Biogénesis de Organelos , Estado Prediabético/diagnóstico , Estado Prediabético/fisiopatología , Músculo Cuádriceps/fisiopatología , Distribución Aleatoria , Tetraspanina 29/sangre , Factores de Tiempo , Factores de Transcripción/sangre
7.
Sci Rep ; 11(1): 14519, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-34267243

RESUMEN

Tight junction complexes are involved in the establishment and maintenance of cell polarity and the regulation of signalling pathways, controlling biological processes such as cell differentiation and cell proliferation. MarvelD3 is a tight junction protein expressed in adult epithelial and endothelial cells. In Xenopus laevis, MarvelD3 morphants present differentiation defects of several ectodermal derivatives. In vitro experiments further revealed that MarvelD3 couples tight junctions to the MEKK1-JNK pathway to regulate cell behaviour and survival. In this work, we found that MarvelD3 is expressed from early developmental stages in the exocrine and endocrine compartments of the pancreas, as well as in endothelial cells of this organ. We thoroughly characterized MarvelD3 expression pattern in developing pancreas and evaluated its function by genetic ablation. Surprisingly, inactivation of MarvelD3 in mice did not alter development and differentiation of the pancreatic tissue. Moreover, tight junction formation and organization, cell polarization, and activity of the JNK-pathway were not impacted by the deletion of MarvelD3.


Asunto(s)
Proteínas con Dominio MARVEL/genética , Páncreas/embriología , Páncreas/fisiología , Proteínas de Uniones Estrechas/genética , Animales , Sistemas CRISPR-Cas , Diferenciación Celular/genética , Femenino , Regulación del Desarrollo de la Expresión Génica , Sistema de Señalización de MAP Quinasas/genética , Proteínas con Dominio MARVEL/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Páncreas/citología , Glándulas Salivales/fisiología , Análisis Espacio-Temporal , Proteínas de Uniones Estrechas/metabolismo
8.
Thyroid ; 30(1): 133-146, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31650902

RESUMEN

Background: The production of thyroid hormones [triiodothyronine (T3), thyroxine (T4)] depends on the organization of the thyroid in follicles, which are lined by a monolayer of thyrocytes with strict apicobasal polarity. This polarization supports vectorial transport of thyroglobulin (Tg) for storage into, and recapture from, the colloid. It also allows selective addressing of channels, transporters, ion pumps, and enzymes to their appropriate basolateral [Na+/I- symporter (NIS), SLC26A7, and Na+/K+-ATPase] or apical membrane domain (anoctamin, SLC26A4, DUOX2, DUOXA2, and thyroperoxidase). How these actors of T3/T4 synthesis reach their final destination remains poorly understood. The PI 3-kinase isoform Vps34/PIK3C3 is now recognized as a main component in the general control of vesicular trafficking and of cell homeostasis through the regulation of endosomal trafficking and autophagy. We recently reported that conditional Vps34 inactivation in proximal tubular cells in the kidney prevents normal addressing of apical membrane proteins and causes abortive macroautophagy. Methods:Vps34 was inactivated using a Pax8-driven Cre recombinase system. The impact of Vps34 inactivation in thyrocytes was analyzed by histological, immunolocalization, and messenger RNA expression profiling. Thyroid hormone synthesis was assayed by 125I injection and plasma analysis. Results:Vps34 conditional knockout (Vps34cKO) mice were born at the expected Mendelian ratio and showed normal growth until postnatal day 14 (P14), then stopped growing and died at ∼1 month of age. We therefore analyzed thyroid Vps34cKO at P14. We found that loss of Vps34 in thyrocytes causes (i) disorganization of thyroid parenchyma, with abnormal thyrocyte and follicular shape and reduced PAS+ colloidal spaces; (ii) severe noncompensated hypothyroidism with extremely low T4 levels (0.75 ± 0.62 µg/dL) and huge thyrotropin plasma levels (19,300 ± 10,500 mU/L); (iii) impaired 125I organification at comparable uptake and frequent occurrence of follicles with luminal Tg but nondetectable T4-bearing Tg; (iv) intense signal in thyrocytes for the lysosomal membrane marker, LAMP-1, as well as Tg and the autophagy marker, p62, indicating defective lysosomal proteolysis; and (v) presence of macrophages in the colloidal space. Conclusions: We conclude that Vps34 is crucial for thyroid hormonogenesis, at least by controlling epithelial organization, Tg iodination as well as proteolytic T3/T4 excision in lysosomes.


Asunto(s)
Fosfatidilinositol 3-Quinasas Clase III/metabolismo , Lisosomas/metabolismo , Tiroglobulina/metabolismo , Glándula Tiroides/metabolismo , Hormonas Tiroideas/metabolismo , Animales , Peróxido de Hidrógeno/metabolismo , Ratones , Proteolisis , Simportadores/metabolismo , Células Epiteliales Tiroideas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...