Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Infect Dev Ctries ; 15(5): 657-664, 2021 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-34106889

RESUMEN

INTRODUCTION: Infections acquired in hospitals are the cause of high morbidity and mortality and with the emergence of resistant bacteria, the problem is greater. The aim of this work was to determine the genetic characteristics and timeline of Klebsiella pneumoniae blaNDM-1 carrying a class 1 integron involved in an intrahospital outbreak. METHODOLOGY: Investigation was made from the first detection of K. pneumoniae blaNDM-1, strain "466", and the last clone "423". 16S rRNA gene analysis showed that 466 strain and clones were related to K. pneumoniae. Extended-spectrum ß-lactamases (ESBL) was detected according to the Clinical and Laboratory Standards Institute (CLSI) and real time-PCR. Typing of K. pneumoniae blaNDM-1 strains was carried by ERIC-PCR and sequencing the variable region of the integrons were performed. RESULTS: A cluster of six resistant isolates of K. pneumoniae blaNDM-1 was detected in intensive care unit (ICU), internal medicine (IM) and orthopedics (OT). Timeline revealed that the first bacterial identification was in ICU and the last clone in OT service. The array genetic of variable region was "IntI/aadA5-drfA17/qacEΔ1-Sul1". CONCLUSIONS: The evidences highlight the importance of the epidemiological surveillance of Extended-spectrum ß-lactamases (ESBL) strains, as well as the need for molecular epidemiological studies to identify the routes of transmission and the contamination sources within health personnel.


Asunto(s)
Infección Hospitalaria/epidemiología , Infecciones por Klebsiella/epidemiología , Klebsiella pneumoniae/aislamiento & purificación , Adulto , Anciano , Anciano de 80 o más Años , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Infección Hospitalaria/tratamiento farmacológico , Infección Hospitalaria/microbiología , Brotes de Enfermedades , Farmacorresistencia Bacteriana Múltiple , Femenino , Hospitales , Humanos , Integrones , Infecciones por Klebsiella/tratamiento farmacológico , Infecciones por Klebsiella/microbiología , Klebsiella pneumoniae/efectos de los fármacos , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/metabolismo , Masculino , México/epidemiología , Pruebas de Sensibilidad Microbiana , Persona de Mediana Edad , beta-Lactamasas/metabolismo
2.
J Infect Dev Ctries ; 15(1): 58-68, 2021 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-33571146

RESUMEN

INTRODUCTION: SARS-CoV2 pandemic marks the need to pay attention to bacterial pathogens that can complicate the hospital stay of patients in the intensive care unit (ICU). ESKAPE bacteria which includes Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter cloacae are considered the most important, because of their close relationship with the development of ventilator-associated pneumonia (VAP). The aim of this work was to identify and characterize ESKAPE bacteria and to detect their possible clonal spread in medical devices, patients, and medical personnel of the ICU for COVID-19 patients of the Hospital Juarez de Mexico. METHODOLOGY: Genetic identification of ESKAPE bacteria was performed by analyzing the 16S rRNA gene. Resistance assays were performed according to the CLSI guidelines. Assembly of AdeABCRS operon and inhibition assays of pumps efflux in Acinetobacter baumannii isolates were performed. Associated gene involved in biofilm formation (icaA) was performed in isolates belonging to the Staphylococcus genus. Finally, typing by ERIC-PCR and characterization of mobile genetic element SCCmec were done. RESULTS: Heterogeneous distribution of ESKAPE and non-ESKAPE bacteria was detected in various medical devices, patients, and medical personnel. Acinetobacter baumannii and Staphylococcus aureus were the predominant ESKAPE members. The analysis of intergenic regions revealed an important clonal distribution of A. baumannii (AdeABCRS+). Genotyping of SCCmec mobile genetic elements and the icaA gene showed that there is no clonal distribution of S. aureus. CONCLUSIONS: Clonal spread of A. baumannii (AdeABCRS+) highlights the importance of adopting good practices for equipment disinfection, surfaces and management of COVID-19 patients.


Asunto(s)
Infecciones por Acinetobacter/transmisión , Acinetobacter baumannii/aislamiento & purificación , COVID-19/prevención & control , Infección Hospitalaria/prevención & control , Unidades de Cuidados Intensivos , Acinetobacter baumannii/patogenicidad , Antibacterianos/farmacología , Biopelículas/crecimiento & desarrollo , Infección Hospitalaria/microbiología , Farmacorresistencia Bacteriana/genética , Equipos y Suministros/microbiología , Genotipo , Humanos , Secuencias Repetitivas Esparcidas , México , Neumonía Asociada al Ventilador/microbiología
3.
Am J Infect Control ; 48(9): 1037-1041, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32645473

RESUMEN

INTRODUCTION: One of the serious consequences of the SARS-CoV-2 pandemic is the shortage of protective equipment for health personnel. N95 masks are considered one of the essential protective equipment in the management of patients with COVID-19. The shortage of N95 masks implies potential health risks for health personnel and significant economic losses for the health institution. The objective of this work was to investigate the disinfection of N95 masks artificially contaminated with SARS-CoV-2 and ESKAPE bacteria by using hydrogen peroxide plasma. MATERIAL AND METHODS: We examined the disinfection capacity of hydrogen peroxide plasma against the SARS-CoV-2 and 2 members of the ESKAPE bacteria (Acinetobacter baumannii and Staphylococcus aureus) through a study of artificial contamination in situ of N95 masks. Amplification of specific genes by real-time reverse transcription polymerase chain reaction of SARS-CoV-2 and microbiological culture of ESKAPE bacteria was performed before and after the disinfection process. RESULTS: SARS-CoV-2 was not detected in all assays using 5 different concentrations of the virus, and A baumannii and S aureus were not cultivable with inoculums of 102 to 106 CFU after disinfection tests of N95 masks with hydrogen peroxide plasma. CONCLUSION: Disinfection of N95 masks by using the hydrogen peroxide plasma technology can be an alternative for their reuse in a shortage situation. Implications for the use of disinfection technologies of N95 masks and the safety of health personnel are discussed.


Asunto(s)
Antiinfecciosos Locales/administración & dosificación , Betacoronavirus/efectos de los fármacos , Infecciones por Coronavirus/prevención & control , Desinfección/métodos , Equipo Reutilizado , Peróxido de Hidrógeno/administración & dosificación , Máscaras/microbiología , Pandemias/prevención & control , Neumonía Viral/prevención & control , Acinetobacter baumannii/efectos de los fármacos , COVID-19 , Humanos , Dispositivos de Protección Respiratoria/microbiología , SARS-CoV-2 , Staphylococcus aureus/efectos de los fármacos
4.
Front Microbiol ; 8: 466, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28396654

RESUMEN

Regular flooding of the soil to reduce salinity will change soil characteristics, but also the microbial community structure. Soil of the former lake Texcoco with electrolytic conductivity (EC) 157.4 dS m-1 and pH 10.3 was flooded monthly in the laboratory under controlled conditions for 10 months while soil characteristics were determined and the archaeal and bacterial community structure monitored by means of 454 pyrosequencing of the 16S rRNA gene. The EC of the soil dropped from 157.8 to 1.7 dS m-1 and the clay content decreased from 430 to 270 g kg-1 after ten floodings, but the pH (10.3) did not change significantly over time. Flooding the soil had a limited effect on the archaeal community structure and only the relative abundance of Haloferax-like 16S rRNA phylotypes changed significantly. Differences in archaeal population structure were more defined by the initial physicochemical properties of the soil sample than by a reduction in salinity. Flooding, however, had a stronger effect on bacterial community structure than on the archaeal community structure. A wide range of bacterial taxa was affected significantly by changes in the soil characteristics, i.e., four phyla, nine classes, 17 orders, and 28 families. The most marked change occurred after only one flooding characterized by a sharp decrease in the relative abundance of bacterial groups belonging to the Gammaproteobacteria, e.g., Halomonadaceae (Oceanospirillales), Pseudomonadaceae, and Xanthomonadaceae and an increase in that of the [Rhodothermales] (Bacteroidetes), Nitriliruptorales (Actinobacteria), and unassigned Bacteria. It was found that flooding the soil sharply reduced the EC, but also the soil clay content. Flooding the soil had a limited effect on the archaeal community structure, but altered the bacterial community structure significantly.

5.
PLoS One ; 11(10): e0160991, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27727277

RESUMEN

Mixing soil or adding earthworms (Eisenia fetida (Savigny, 1826)) accelerated the removal of anthracene, a polycyclic aromatic hydrocarbon, from a pasture and an arable soil, while a non-ionic surfactant (Surfynol® 485) inhibited the removal of the contaminant compared to the untreated soil. It was unclear if the treatments affected the soil bacterial community and consequently the removal of anthracene. Therefore, the bacterial community structure was monitored by means of 454 pyrosequencing of the 16S rRNA gene in the pasture and arable soil mixed weekly, amended with Surfynol® 485, E. fetida or organic material that served as food for the earthworms for 56 days. In both soils, the removal of anthracene was in the order: mixing soil weekly (100%) > earthworms applied (92%) > organic material applied (77%) > untreated soil (57%) > surfactant applied (34%) after 56 days. There was no clear link between removal of anthracene from soil and changes in the bacterial community structure. On the one hand, application of earthworms removed most of the contaminant from the arable soil and had a strong effect on the bacterial community structure, i.e. a decrease in the relative abundance of the Acidobacteria, Chloroflexi and Gemmatimonadetes, and an increase in that of the Proteobacteria compared to the unamended soil. Mixing the soil weekly removed all anthracene from the arable soil, but had little or no effect on the bacterial community structure. On the other hand, application of the surfactant inhibited the removal of anthracene from the arable soil compared to the untreated soil, but had a strong effect on the bacterial community structure, i.e. a decrease in the relative abundance of Cytophagia (Bacteroidetes), Chloroflexi, Gemmatimonadetes and Planctomycetes and an increase in that of the Flavobacteria (Bacteroidetes) and Proteobacteria. Additionally, the removal of anthracene was similar in the different treatments of both the arable and pasture soil, but the effect of application of carrot residue, earthworms or the surfactant on the bacterial community structure was more accentuated in the arable soil than in the pasture soil. It was found that removal of anthracene was not linked to changes in the bacterial community structure.


Asunto(s)
Antracenos/metabolismo , Bacterias/efectos de los fármacos , Microbiología del Suelo , Acidobacteria/efectos de los fármacos , Acidobacteria/genética , Acidobacteria/crecimiento & desarrollo , Animales , Antracenos/farmacología , Bacterias/genética , Bacterias/crecimiento & desarrollo , Bacteroidetes/efectos de los fármacos , Bacteroidetes/genética , Bacteroidetes/crecimiento & desarrollo , Chloroflexi/efectos de los fármacos , Chloroflexi/genética , Chloroflexi/crecimiento & desarrollo , ADN Bacteriano/química , ADN Bacteriano/aislamiento & purificación , ADN Bacteriano/metabolismo , Oligoquetos/metabolismo , Análisis de Componente Principal , Proteobacteria/efectos de los fármacos , Proteobacteria/genética , Proteobacteria/crecimiento & desarrollo , ARN Ribosómico 16S/química , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Contaminantes del Suelo/química , Contaminantes del Suelo/metabolismo , Contaminantes del Suelo/toxicidad , Tensoactivos/toxicidad
6.
J Environ Biol ; 36(1): 229-34, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26536797

RESUMEN

Bioavailability of contaminants, such as anthracene (Anthra), a polycyclic aromatic hydrocarbon (PAHs), and their removal from soil has been related to their extractability with non-exhaustive techniques, such as hydroxypropyl-beta-cyclodextrin (HPCD) or n-butanol. Anthra was extracted with HPCD, n-butanol and by exhaustive ultrasonic extraction method from sterilized and unsterilized alkaline soil of the former lake Texcoco, having pH ranging from pH 8.2 to 10.1 and electrolytic conductivity varying from 1.2 dS m(-1) to 95.2 dS m(-1), respectively. About 24.4 and 37.6% of Anthra was removed biologically from soil as estimated by exhaustive technique after 56 days. The percentage of Anthra that was removed from soil by exhaustive technique was not related to the amount thatwas extractable with HPCD or n-butanol. It was found that the Anthra extractable with n-butanol or HPCD did not correlate well with the removal of the contaminant from soil. In this study, the removal of Anthra from soil could not be predicted by the amount of Anthra that was extracted with n-butanol or HPCD .


Asunto(s)
Antracenos/química , Salinidad , Contaminantes del Suelo/química , Suelo/química , Fraccionamiento Químico , Concentración de Iones de Hidrógeno , Factores de Tiempo
7.
Extremophiles ; 18(4): 733-43, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24846742

RESUMEN

After chloroform fumigating an arable soil, the relative abundance of phylotypes belonging to only two phyla (Actinobacteria and Firmicutes) and two orders [Actinomycetales and Bacillales (mostly Bacillus)] increased in a subsequent aerobic incubation, while it decreased for a wide range of bacterial groups. It remained to be seen if similar bacterial groups were affected when an extreme alkaline saline soil was fumigated. Soil with electrolytic conductivity between 139 and 157 dS m(-1), and pH 10.0 and 10.3 was fumigated and the bacterial community structure determined after 0, 1, 5 and 10 days by analysis of the 16S rRNA gene, while an unfumigated soil served as control. The relative abundance of the Firmicutes increased in the fumigated soil (52.8%) compared to the unfumigated soil (34.2%), while that of the Bacteroidetes decreased from 16.2% in the unfumigated soil to 8.8% in the fumigated soil. Fumigation increased the relative abundance of the genus Bacillus from 14.7% in the unfumigated soil to 25.7%. It was found that phylotypes belonging to the Firmicutes, mostly of the genus Bacillus, were dominant in colonizing the fumigated alkaline saline as found in the arable soil, while the relative abundance of a wide range of bacterial groups decreased.


Asunto(s)
Actinomycetales/aislamiento & purificación , Bacillus/aislamiento & purificación , Fumigación , Microbiota , Microbiología del Suelo , Actinomycetales/efectos de los fármacos , Actinomycetales/genética , Álcalis/farmacología , Bacillus/efectos de los fármacos , Bacillus/genética , Cloroformo/farmacología , Filogenia , ARN Ribosómico 16S/genética
8.
Ecotoxicol Environ Saf ; 96: 238-41, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23896178

RESUMEN

Contamination of soils with polycyclic aromatic hydrocarbons (PAHs) is a serious problem in petroleum producing countries, such as México, and environment-friendly easy to apply techniques are required to accelerate the removal of the contaminants. Removal of anthracene was monitored in an arable and a pasture soil regularly mixed or amended with organic material, a non-ionic surfactant (Surfynol(®) 485) or earthworms (Eisenia fetida (Savigny, 1826)). In both soils the same results were obtained although the removal of anthracene was faster from the pasture than from the arable soil. The fastest removal of anthracene was obtained when the soil was mixed every 7 days and no contaminant was detected in both soils after 56 days. The second fastest removal of anthracene was obtained when earthworms were added to soil and no contaminant was detected in both soils after 112 days. Application of organic material that served as feed for the earthworms also accelerated the removal of the contaminant compared to the unamended soil, but application of the surfactant inhibited the dissipation of the contaminant. Only 37% of the spiked anthracene was removed from soil when surfactant was applied, while 62% was dissipated in the unamended soil after 112 days. It was found that simply mixing a soil removed anthracene faster than when earthworms were applied, while the application of the surfactant inhibited the removal of anthracene by the autochthonous soil microorganisms.


Asunto(s)
Antracenos/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Contaminantes del Suelo/análisis , Animales , Bacterias/efectos de los fármacos , Biodegradación Ambiental/efectos de los fármacos , México , Oligoquetos/metabolismo , Hidrocarburos Policíclicos Aromáticos/metabolismo , Suelo/química , Microbiología del Suelo , Contaminantes del Suelo/metabolismo , Tensoactivos/farmacología , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...