Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Data Brief ; 54: 110415, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38690319

RESUMEN

This article presents data on farming operations traceability and associated performances, for winegrowing systems with low phytosanitary inputs. 343 farms were sampled from the DEPHY network: a governmental initiative to produce references on phytosanitary-efficient cropping systems under real conditions of production. Data were collected every campaign between 2017 and 2020, by multiple extensionists who provide support to the voluntarily enlisted growers, in exchange for traceability of their practices and their commitment to reducing pesticide use. The dataset includes raw data of farming operations (date, machinery, inputs, products and doses, etc.), and performance indicators computed at farm level (Treatment Frequency Index, workload, expenses, greenhouse gas emissions, etc.). This information could be useful to researchers, policymakers and agricultural consultants. It provides leads to understand how winegrowers manage to successfully reduce their pesticide consumption, as well as assessing the triggers and entailments of such transitions.

2.
Food Chem ; 360: 130120, 2021 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-34034050

RESUMEN

Methyl salicylate (MeSA) is a plant metabolite that induces plant defence resistance and an odorous volatile compound presenting green nuances. This volatile compound was shown to be present in wine samples, sometimes at concentrations above its olfactory detection threshold. MeSA is localized in grapes, particularly in the skins and stems, and is extracted during red wine vinification. It was detected at the highest concentrations in wines of several grape varieties, made from grapes affected by cryptogamic diseases, namely downy mildew caused by Plasmopara viticola, and black rot caused by Guignardia bidwellii. It has also been detected in wines from vines affected by Esca, a Grapevine Trunk Disease. MeSA can also be considered to be a chemical marker in grapes and wine indicative of the level of development of several vine cryptogamic diseases.


Asunto(s)
Salicilatos/análisis , Vitis/química , Vino/análisis , Ascomicetos/crecimiento & desarrollo , Ascomicetos/metabolismo , Cromatografía Líquida de Alta Presión , Frutas/química , Frutas/metabolismo , Cromatografía de Gases y Espectrometría de Masas , Humanos , Enfermedades de las Plantas/microbiología , Salicilatos/aislamiento & purificación , Extracción en Fase Sólida , Gusto/fisiología , Vitis/metabolismo
3.
Curr Biol ; 31(10): 2155-2166.e4, 2021 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-33770491

RESUMEN

Europe is the historical cradle of viticulture, but grapevines (Vitis vinifera) have been increasingly threatened by pathogens of American origin. The invasive oomycete Plasmopara viticola causes downy mildew, one of the most devastating grapevine diseases worldwide. Despite major economic consequences, its invasion history remains poorly understood. We analyzed a comprehensive dataset of ∼2,000 samples, collected from the most important wine-producing countries, using nuclear and mitochondrial gene sequences and microsatellite markers. Population genetic analyses revealed very low genetic diversity in invasive downy mildew populations worldwide and little evidence of admixture. All the invasive populations originated from only one of the five native North American lineages, the one parasitizing wild summer grape (V. aestivalis). An approximate Bayesian computation-random forest approach allowed inferring the worldwide invasion scenario of P. viticola. After an initial introduction into Europe, invasive European populations served as a secondary source of introduction into vineyards worldwide, including China, South Africa, and twice independently, Australia. Only the invasion of Argentina probably represents a tertiary introduction, from Australia. Our findings provide a striking example of a global pathogen invasion resulting from secondary dispersal of a successful invasive population. Our study will also help designing quarantine regulations and efficient breeding for resistance against grapevine downy mildew.


Asunto(s)
Oomicetos , Enfermedades de las Plantas/microbiología , Vitis , Teorema de Bayes , Resistencia a la Enfermedad , Europa (Continente) , Genética de Población , Repeticiones de Microsatélite , Oomicetos/genética , Oomicetos/patogenicidad , Vitis/microbiología
4.
Mol Ecol Resour ; 21(3): 762-780, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33245839

RESUMEN

Environmental DNA contains information on the species interaction networks that support ecosystem functions and services. Next-generation biomonitoring proposes the use of this data to reconstruct ecological networks in real time and then compute network-level properties to assess ecosystem change. We investigated the relevance of this proposal by assessing: (i) the replicability of DNA-based networks in the absence of ecosystem change, and (ii) the benefits and shortcomings of community- and network-level properties for monitoring change. We selected crop-associated microbial networks as a case study because they support disease regulation services in agroecosystems and analysed their response to change in agricultural practice between organic and conventional systems. Using two statistical methods of network inference, we showed that network-level properties, especially ß-properties, could detect change. Moreover, consensus networks revealed robust signals of interactions between the most abundant species, which differed between agricultural systems. These findings complemented those obtained with community-level data that showed, in particular, a greater microbial diversity in the organic system. The limitations of network-level data included (i) the very high variability of network replicates within each system; (ii) the low number of network replicates per system, due to the large number of samples needed to build each network; and (iii) the difficulty in interpreting links of inferred networks. Tools and frameworks developed over the last decade to infer and compare microbial networks are therefore relevant to biomonitoring, provided that the DNA metabarcoding data sets are large enough to build many network replicates and progress is made to increase network replicability and interpretation.


Asunto(s)
ADN Ambiental , Ecosistema , Monitoreo del Ambiente , Consorcios Microbianos
6.
BMC Biol ; 18(1): 90, 2020 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-32698880

RESUMEN

BACKGROUND: Although native to North America, the invasion of the aphid-like grape phylloxera Daktulosphaira vitifoliae across the globe altered the course of grape cultivation. For the past 150 years, viticulture relied on grafting-resistant North American Vitis species as rootstocks, thereby limiting genetic stocks tolerant to other stressors such as pathogens and climate change. Limited understanding of the insect genetics resulted in successive outbreaks across the globe when rootstocks failed. Here we report the 294-Mb genome of D. vitifoliae as a basic tool to understand host plant manipulation, nutritional endosymbiosis, and enhance global viticulture. RESULTS: Using a combination of genome, RNA, and population resequencing, we found grape phylloxera showed high duplication rates since its common ancestor with aphids, but similarity in most metabolic genes, despite lacking obligate nutritional symbioses and feeding from parenchyma. Similarly, no enrichment occurred in development genes in relation to viviparity. However, phylloxera evolved > 2700 unique genes that resemble putative effectors and are active during feeding. Population sequencing revealed the global invasion began from the upper Mississippi River in North America, spread to Europe and from there to the rest of the world. CONCLUSIONS: The grape phylloxera genome reveals genetic architecture relative to the evolution of nutritional endosymbiosis, viviparity, and herbivory. The extraordinary expansion in effector genes also suggests novel adaptations to plant feeding and how insects induce complex plant phenotypes, for instance galls. Finally, our understanding of the origin of this invasive species and its genome provide genetics resources to alleviate rootstock bottlenecks restricting the advancement of viticulture.


Asunto(s)
Adaptación Biológica , Evolución Biológica , Genoma de los Insectos/fisiología , Hemípteros/genética , Adaptación Biológica/genética , Distribución Animal , Animales , Especies Introducidas , Vitis
7.
Plant Dis ; 104(5): 1291-1297, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32191557

RESUMEN

The current study validated a mechanistic model for Botrytis cinerea on grapevine with data from 23 independent Botrytis bunch rot (BBR) epidemics (combinations of vineyards × year) that occurred between 1997 and 2018 in Italy, France, and Spain. The model was operated for each vineyard by using weather data and vine growth stages to anticipate, at any day of the vine-growing season, the disease severity (DS) at harvest (severe, DS ≥ 15%; intermediate, 5 < DS < 15%; and mild, DS ≤ 5%). To determine the ability of the model to account for latent infections, postharvest incubation assays were also conducted using mature berries without symptoms or signs of BBR. The model correctly classified the severity of 15 of 23 epidemics (65% of epidemics) when the classification was based on field assessments of BBR severity; when the model was operated to include BBR severity after incubation assays, its ability to correctly predict BBR severity increased from 65% to >87%. This result showed that the model correctly accounts for latent infections, which is important because latent infections can substantially increase DS. The model was sensitive and specific, with the false-positive and false-negative proportion of model predictions equal to 0.24 and 0, respectively. Therefore, the model may be considered a reliable tool for decision-making for BBR control in vineyards.


Asunto(s)
Infecciones , Vitis , Botrytis , Granjas , Francia , Humanos , Italia , Enfermedades de las Plantas , España
8.
Pest Manag Sci ; 75(2): 324-332, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29885027

RESUMEN

BACKGROUND: Control of Botrytis bunch rot (BBR) is currently based on the application of fungicides at four timings corresponding to specific growth stages of vines: end of flowering (A), pre-bunch closure (B), veraison (C) and before harvest (D). The current research provides a network meta-analysis of 116 studies conducted between 1963 and 2016 in nine countries, in which 14 strategies (based on combinations of 1, 2, 3, or 4 sprays applied in A, B, C, and/or D) were compared. RESULTS: When a one-spray strategy was applied, BBR control was more effective with sprays applied in A, C, or D than B. With a two-spray strategy, strategy AC provided similar control as strategy BC; strategy CD also provided good control. For a 3-spray strategy, the best disease control was consistently obtained with strategy ACD. Four-spray strategy ABCD provided the best control but often involved needless sprays so that the routine application of four sprays is not justified. CONCLUSIONS: Spraying at timing A seems to be very important for achieving efficient and flexible disease control. Flexibility is reduced by spraying at timing B rather than A. © 2018 Society of Chemical Industry.


Asunto(s)
Botrytis/efectos de los fármacos , Fungicidas Industriales/administración & dosificación , Control de Plagas/métodos , Enfermedades de las Plantas/prevención & control , Vitis/microbiología , Granjas , Metaanálisis en Red
9.
Food Chem ; 239: 102-110, 2018 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-28873518

RESUMEN

This work reports the identification of volatile compounds involved in the particular and atypical flavor detected in Vitis vinifera red Merlot and Cabernet Sauvignon wines made with grapes infected and wilted by brown rot (Plasmopara viticola). Must made from withered grapes had green aromas while red wines were marked by intense odor reminiscent of green, herbaceous notes but also figs and cooked fruit. Thanks to GC-O and GC-MS analysis, cooked fruit notes were identified as 3-methyl-2,4-nonanedione, γ-nonalactone and γ-decalactone, whereas herbaceous and green aromas were identified as (Z)-1,5-octadien-3-one and 3-isobutyl-2-methoxypyrazine. We show that the organoleptic impact of P. viticola is more pronounced in Merlot wines compared to Cabernet Sauvignon ones. The highest levels of 3-methyl-2,4-nonanedione (75.3ng/L) were found in old Merlot wines made with 20% infected berries, suggesting the incidence of berry quality on the ability of a wine to age.


Asunto(s)
Vino , Frutas , Pirazinas , Vitis
10.
Mol Ecol ; 26(7): 1936-1951, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28063192

RESUMEN

Adaptation produces hard or soft selective sweeps depending on the supply of adaptive genetic polymorphism. The evolution of pesticide resistance in parasites is a striking example of rapid adaptation that can shed light on selection processes. Plasmopara viticola, which causes grapevine downy mildew, forms large populations, in which resistance has rapidly evolved due to excessive fungicide use. We investigated the pathways by which fungicide resistance has evolved in this plant pathogen, to determine whether hard or soft selective sweeps were involved. An analysis of nucleotide polymorphism in 108 field isolates from the Bordeaux region revealed recurrent mutations of cytb and CesA3 conferring resistance to quinone outside inhibiting (QoI) and carboxylic acid amide (CAA) fungicides, respectively. Higher levels of genetic differentiation were observed for nucleotide positions involved in resistance than for neutral microsatellites, consistent with local adaptation of the pathogen to fungicide treatments. No hitchhiking was found between selected sites and neighbouring polymorphisms in cytb and CesA3, confirming multiple origins of resistance alleles. We assessed resistance costs, by evaluating the fitness of the 108 isolates through measurements of multiple quantitative pathogenicity traits under controlled conditions. No significant differences were found between sensitive and resistant isolates, suggesting that fitness costs may be absent or negligible. Our results indicate that the rapid evolution of fungicide resistance in P. viticola has involved a soft sweep.


Asunto(s)
Resistencia a Medicamentos/genética , Evolución Molecular , Fungicidas Industriales/farmacología , Oomicetos/genética , Francia , Aptitud Genética , Repeticiones de Microsatélite , Mutación , Oomicetos/efectos de los fármacos , Oomicetos/patogenicidad , Fenotipo , Enfermedades de las Plantas/parasitología , Polimorfismo Genético , Selección Genética , Vitis/parasitología
11.
PeerJ ; 4: e2656, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27833817

RESUMEN

BACKGROUND: Dispersal events between habitat patches in a landscape mosaic can structure ecological communities and influence the functioning of agrosystems. Here we investigated whether short-distance dispersal events between vineyard and forest patches shape foliar fungal communities. We hypothesized that these communities homogenize between habitats over the course of the growing season, particularly along habitat edges, because of aerial dispersal of spores. METHODS: We monitored the richness and composition of foliar and airborne fungal communities over the season, along transects perpendicular to edges between vineyard and forest patches, using Illumina sequencing of the Internal Transcribed Spacer 2 (ITS2) region. RESULTS: In contrast to our expectation, foliar fungal communities in vineyards and forest patches increasingly differentiate over the growing season, even along habitat edges. Moreover, the richness of foliar fungal communities in grapevine drastically decreased over the growing season, in contrast to that of forest trees. The composition of airborne communities did not differ between habitats. The composition of oak foliar fungal communities change between forest edge and centre. DISCUSSION: These results suggest that dispersal events between habitat patches are not major drivers of foliar fungal communities at the landscape scale. Selective pressures exerted in each habitat by the host plant, the microclimate and the agricultural practices play a greater role, and might account for the differentiation of foliar fugal communities between habitats.

12.
Genome Announc ; 4(5)2016 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-27660780

RESUMEN

Plasmopara viticola is a biotrophic pathogenic oomycete responsible for grapevine downy mildew. We present here the first draft of the P. viticola genome. Analysis of this sequence will help in understanding plant-pathogen interactions in oomycetes, especially pathogen host specialization and adaptation to host resistance.

13.
Evol Appl ; 9(5): 709-25, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27247621

RESUMEN

An understanding of the evolution of pathogen quantitative traits in response to host selective pressures is essential for the development of durable management strategies for resistant crops. However, we still lack experimental data on the effects of partial host resistance on multiple phenotypic traits (aggressiveness) and evolutionary strategies in pathogens. We performed a cross-inoculation experiment with four grapevine hosts and 103 isolates of grapevine downy mildew (Plasmopara viticola) sampled from susceptible and partially resistant grapevine varieties. We analysed the neutral and adaptive genetic differentiation of five quantitative traits relating to pathogen transmission. Isolates from resistant hosts were more aggressive than isolates from susceptible hosts, as they had a shorter latency period and higher levels of spore production. This pattern of adaptation contrasted with the lack of neutral genetic differentiation, providing evidence for directional selection. No specificity for a particular host variety was detected. Adapted isolates had traits that were advantageous on all resistant varieties. There was no fitness cost associated with this genetic adaptation, but several trade-offs between pathogen traits were observed. These results should improve the accuracy of prediction of fitness trajectories for this biotrophic pathogen, an essential element for the modelling of durable deployment strategies for resistant varieties.

14.
Pest Manag Sci ; 71(9): 1247-57, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25264219

RESUMEN

BACKGROUND: In France, viticulture accounts for 20% of the phytochemicals sprayed in agriculture, and 80% of grapevine pesticides target powdery and downy mildews. European policies promote pesticide use reduction, and new methods for low-input disease management are needed for viticulture. Here, we present the assessment, in France, of Mildium, a new decision support system for the management of grapevine mildews. RESULTS: A 4 year assessment trial of Mildium has been conducted in a network of 83 plots distributed across the French vineyards. In most vineyards, Mildium has proved to be successful at protecting the crop while reducing by 30-50% the number of treatments required when compared with grower practices. CONCLUSION: The design of Mildium results from the formalisation of a common management of both powdery and downy mildews and eventually leads to a significant fungicide reduction at the plot scale. It could encourage stakeholders to design customised farm-scale and low-chemical-input decision support methods.


Asunto(s)
Ascomicetos , Fungicidas Industriales , Oomicetos , Enfermedades de las Plantas/microbiología , Vitis/microbiología , Técnicas de Apoyo para la Decisión , Francia
15.
J Microbiol Methods ; 107: 169-75, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25448022

RESUMEN

Quantitative pathogenicity traits drive the fitness and dynamics of pathogens in agricultural ecosystems and are key determinants of the correct management of crop production over time. However, traits relating to infection potential (i.e. zoospore production) have been less thoroughly investigated in oomycetes than traits relating to dispersal (i.e. sporangium production). We simultaneously quantified sporangium and zoospore production in a biotrophic oomycete, for the joint assessment of life-cycle traits relating to dispersal and infection potentials. We used an automatic particle analyzer to count and size the sporangia and/or zoospores produced at t = 0 min (no zoospore release) and t = 100 min (zoospore release) in 43 Plasmopara viticola isolates growing on the susceptible Vitis vinifera cv. Cabernet Sauvignon. We were able to differentiate and quantify three types of propagules from different stages of the pathogen life cycle: full sporangia, empty sporangia and zoospores. The method was validated by comparing the sporangium and zoospore counts obtained with an automatic particle analyzer and under a stereomicroscope (manual counting). Each isolate produced a mean of 5.8 ± 1.9 (SD) zoospores per sporangium. Significant relationships were found between sporangium production and sporangium size (negative) and between sporangium size and the number of zoospores produced per sporangium (positive). However, there was a significant positive correlation between total sporangium production and total zoospore production. This procedure can provide a valid quantification of the production of both sporangia and zoospores by oomycetes in large numbers of samples, facilitating joint estimation of the dispersal and infection potentials of plant pathogens in various agro-ecological contexts.


Asunto(s)
Técnicas Microbiológicas , Oomicetos , Carácter Cuantitativo Heredable , Esporangios , Oomicetos/ultraestructura , Fenotipo , Esporangios/ultraestructura , Vitis/microbiología
16.
Phytopathology ; 104(7): 692-701, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24915427

RESUMEN

The putative center of origin of Plasmopara viticola, the causal agent of grape downy mildew, is eastern North America, where it has been described on several members of the family Vitaceae (e.g., Vitis spp., Parthenocissus spp., and Ampelopsis spp.). We have completed the first large-scale sampling of P. viticola isolates across a range of wild and cultivated host species distributed throughout the above region. Sequencing results of four partial genes indicated the presence of a new P. viticola species on Vitis vulpina in Virginia, adding to the four cryptic species of P. viticola recently recorded. The phylogenetic analysis also indicated that the P. viticola species found on Parthenocissus quinquefolia in North America is identical to Plasmopara muralis in Europe. The geographic distribution and host range of five pathogen species was determined through analysis of the internal transcribed spacer polymorphism of 896 isolates of P. viticola. Among three P. viticola species found on cultivated grape, one was restricted to Vitis interspecific hybrids within the northern part of eastern North America. A second species was recovered from V. vinifera and V. labrusca, and was distributed across most of the sampled region. A third species, although less abundant, was distributed across a larger geographical range, including the southern part of eastern North America. P. viticola clade aestivalis predominated (83% of isolates) in vineyards of the European winegrape V. vinifera within the sampled area, indicating that a single pathogen species may represent the primary threat to the European host species within eastern North America.


Asunto(s)
Peronospora/aislamiento & purificación , Enfermedades de las Plantas/parasitología , Vitis/parasitología , Región de los Apalaches , Secuencia de Bases , ADN Espaciador Ribosómico/química , ADN Espaciador Ribosómico/genética , Florida , Geografía , Great Lakes Region , Especificidad del Huésped , Datos de Secuencia Molecular , Peronospora/clasificación , Peronospora/genética , Filogenia , Hojas de la Planta/parasitología , Quebec , Alineación de Secuencia , Análisis de Secuencia de ADN
17.
Infect Genet Evol ; 27: 500-8, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24184095

RESUMEN

Crop pathogens evolve rapidly to adapt to their hosts. The use of crops with quantitative disease resistance is expected to alter selection of pathogen life-history traits. This may result in differential adaptation of the pathogen to host cultivars and, sometimes, to the erosion of quantitative resistance. Here, we assessed the level of host adaptation in an oomycete plant pathogenic species. We analysed the phenotypic and genetic variability of 17 Plasmopara viticola isolates collected on Vitis vinifera and 35 isolates from partially resistant varieties (Regent and genotypes carrying the Rpv1 gene). Cross-inoculation experiments assessed two components of aggressiveness and a life-history trait of the pathogen: disease severity, sporangial production and sporangia size. The results contribute evidence to the emergence of P. viticola aggressive isolates presenting a high level of sporulation on the partially resistant Regent. By contrast, no adaptation to the Rpv1 gene was found in this study. The erosion of Regent resistance may have occurred in less than 5years and at least three times independently in three distant wine-producing areas. Populations from resistant varieties showed a significant increase in sporangia production capacity, indicating an absence of fitness costs for this adaptation. The increase in the number of sporangia was correlated with a reduction in sporangia size, a result which illustrates how partial plant disease resistance can impact selection of the pathogen's life-history traits. This case study on grapevine downy mildew shows how new plant pathogen populations emerge in agro-ecosystems by adapting to partial host resistance. This adaptive pattern highlights the need for wise management of plant partial disease resistance to ensure its sustainability over time.


Asunto(s)
Resistencia a la Enfermedad , Interacciones Huésped-Patógeno , Oomicetos , Vitis/microbiología , Geografía
18.
Pest Manag Sci ; 66(12): 1367-73, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20949548

RESUMEN

BACKGROUND: Limiting the use of fungicides is due to become an important issue in managing Erysiphe necator (Schwein) Burrill infections in vineyards. The authors determined how three fungicides currently used by vine growers could be managed to control the early stages of an E. necator-induced epidemic. RESULTS: Leaf-disc bioassays and field experiments suggested that the protectant quinoxyfen induced minor disruption in E. necator development, but compounds with protectant and curative properties (tebuconazole and trifloxystrobin) caused significant, although different, disruption during E. necator-induced epidemics. Bioassays showed that each of the antifungals were most effective at different stages of fungal development, tebuconazole before sporulation and trifloxystrobin after sporulation of the colonies. Results from the bioassay also highlighted likely occurrences in the field, where several stages of fungal development are encountered simultaneously. CONCLUSION: The present findings were complementary: leaf-disc tests showed when the fungicides were most effective at inhibiting E. necator infection cycles; the field trial provided results in terms of incidence and severity of disease on bunches without reference to the pathogenic cycle development. A protection strategy combining the different types of fungicide under study is suggested.


Asunto(s)
Ascomicetos/efectos de los fármacos , Ascomicetos/crecimiento & desarrollo , Epidemias , Fungicidas Industriales/farmacología , Enfermedades de las Plantas/microbiología , Vitis/microbiología , Quinolinas/farmacología , Esporas Fúngicas/efectos de los fármacos , Esporas Fúngicas/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...