Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Behav Brain Res ; 356: 495-503, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29920309

RESUMEN

The medial prefrontal cortex (mPFC) has reciprocal projections with many cerebral structures that are crucial in the control of food ingestion behavior and reward processing; Thus the mPFC has an important function in taste memory recognition. Previous results indicate that long-term consumption of sugar produces changes in appetitive re-learning and suggest that this could trigger an escalating consumption due to the inability to learn new negative consequences related to the same taste. Further evidence suggests that general identity reward value could be encoded in the mPFC. Therefore, the purpose of this study was to evaluate in rats whether after 21 days of sugar consumption the increase in sweet taste preference and latent inhibition of conditioned taste aversion (CTA) were affected differentially by pharmacological activation or blockage of dopaminergic and ß-adrenergic receptors, in the mPFC, during CTA acquisition. Results showed that after long-term sugar exposure, mPFC activation of ß-adrenergic receptors with clenbuterol delayed aversive memory extinction, but the blockade with propranolol or activation of dopaminergic receptors with apomorphine increased CTA latent inhibition and accelerated aversive memory extinction only after acute sugar exposure. Only dopaminergic blockade with haloperidol prevented sweet taste preference expression after long-term sugar consumption, increased CTA latent inhibition and accelerated extinction after acute sugar exposure. Taken together, the present data provide evidence that catecholaminergic receptors in the mPFC after prolonged sugar consumption underwent functional changes related to re-learning and new aversive taste learning.


Asunto(s)
Reacción de Prevención/efectos de los fármacos , Memoria/efectos de los fármacos , Corteza Prefrontal/efectos de los fármacos , Azúcares/efectos adversos , Animales , Corteza Cerebral/fisiología , Condicionamiento Clásico/fisiología , Extinción Psicológica/efectos de los fármacos , Masculino , Memoria/fisiología , Corteza Prefrontal/fisiología , Propranolol/farmacología , Ratas Wistar , Gusto/efectos de los fármacos , Tiempo
2.
Neurochem Int ; 100: 159-163, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27650435

RESUMEN

It was recently suggested that alteration in lipid raft composition in Alzheimer's disease may lead to perturbations in neurons signalosome, which may help explain the deficits observed in synaptic plasticity mechanisms and long-term memory impairments in AD models. As a first effort to address this issue, we evaluated lipid-raft contents of distinct NMDA and AMPA receptor subunits in the hippocampus of the 3xTg-AD model of Alzheimer's disease. Our results show that compared to controls, 10 months-old 3xTg-AD mice have diminished levels of NMDA receptors in rafts but not in post-synaptic density or total fractions. Additionally, the levels of GluR1 were unaltered in all the analyzed fractions. Finally, we went on to show that the diminished levels of NMDA receptors in rafts correlated with diminished global levels of Arc/Arg3.1, a synaptic protein with a central role in long-term memory formation. This study adds to our current understanding of the signaling pathways disruptions observed in current Alzheimer's disease models.


Asunto(s)
Proteínas del Citoesqueleto/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Plasticidad Neuronal/fisiología , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapsis/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Animales , Modelos Animales de Enfermedad , Hipocampo/metabolismo , Masculino , Microdominios de Membrana , Ratones , Ratones Transgénicos , N-Metilaspartato/metabolismo , Neuronas/metabolismo , Densidad Postsináptica/metabolismo , Receptores AMPA/genética , Receptores AMPA/metabolismo
3.
Biochim Biophys Acta ; 1858(11): 2603-2610, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27457704

RESUMEN

Recent studies have shown that anesthetic agents alter the physical properties of lipid rafts on model membranes. However, if this destabilization occurs in brain membranes, altering the lipid raft-protein interaction, remains unknown. We analyzed the effects produced by pentobarbital (PB) on brain plasma membranes and lipid rafts in vivo. We characterized for the first time the thermotropic behavior of plasma membranes, synaptosomes, and lipid rafts from rat brain. We found that the transition temperature from the ordered gel to disordered liquid phase of lipids is close to physiological temperature. We then studied the effect of PB on protein composition of lipid rafts. Our results show a reduction of the total protein associated to rafts, with a higher reduction of the NMDAR compared to the GABAA receptor. Both receptors are considered the main targets of PB. In general, our results suggest that lipid rafts could be plausible mediators in anesthetic action.


Asunto(s)
Encéfalo/efectos de los fármacos , Hipnóticos y Sedantes/farmacología , Microdominios de Membrana/efectos de los fármacos , Pentobarbital/farmacología , Receptores de GABA-A/genética , Receptores de N-Metil-D-Aspartato/genética , Anestesia , Animales , Encéfalo/metabolismo , Expresión Génica , Hipnóticos y Sedantes/metabolismo , Masculino , Microdominios de Membrana/química , Microdominios de Membrana/metabolismo , Pentobarbital/metabolismo , Ratas , Ratas Wistar , Receptores de GABA-A/biosíntesis , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Receptores de N-Metil-D-Aspartato/biosíntesis , Sinaptosomas/química , Sinaptosomas/efectos de los fármacos , Sinaptosomas/metabolismo , Temperatura de Transición
4.
Brain Res ; 1215: 116-22, 2008 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-18468585

RESUMEN

Taste recognition memory is a process by which animals associate a taste previously experienced with its gastric consequences. Novel taste presentation induces in the insular cortex biochemical modifications that decrease after the taste becomes familiar. Here we show that, in this cortex, consumption of a novel taste produces an increase of the NR2A and NR2B subunits of the NMDA receptor in the detergent resistant membrane (DRM) fraction. This increase did not occur in the adjacent parietal cortex, was not due to a change in the total amount of protein, and is related with the novelty of the stimulus since it was reduced after the taste became familiar. Furthermore, NR2A and NR2B subunits increase in the DRM was blocked by the injection of a muscarinic acetylcholine receptor antagonist. These results suggest that modulation of NMDA receptors in the insular cortex through the increase of its NR2A and NR2B subunits in the DRM is involved in the taste memory formation via a cholinergic process.


Asunto(s)
Corteza Cerebral/metabolismo , Membranas Intracelulares/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Reconocimiento en Psicología/fisiología , Gusto/fisiología , Animales , Masculino , Subunidades de Proteína/metabolismo , Transporte de Proteínas , Ratas , Ratas Wistar , Receptores Muscarínicos/metabolismo
5.
Brain Res ; 1148: 177-82, 2007 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-17382303

RESUMEN

After consumption of a new taste, there are mainly two possible outcomes for the establishment of a taste memory, either it will be aversive or safe depending on the consequences of taste consumption. It has been proposed that both types of learning share a common initial taste memory trace, which will lead to two different memory traces, safe or aversive. To study the role of PKC activity in aversive or safe taste memory formation, we administered chelerythrine, a PKC inhibitor, into the insular cortex or parietal cortex 20 min before conditioned taste aversion or attenuation of neophobia training. The results suggest that PKC activity is needed in the insular cortex for the establishment of aversive taste memory, but not for safe taste memory.


Asunto(s)
Conducta Apetitiva/fisiología , Reacción de Prevención/fisiología , Encéfalo/enzimología , Memoria/fisiología , Proteína Quinasa C/metabolismo , Gusto/fisiología , Alcaloides/efectos adversos , Animales , Apetito/efectos de los fármacos , Apetito/fisiología , Conducta Apetitiva/efectos de los fármacos , Reacción de Prevención/efectos de los fármacos , Benzofenantridinas/efectos adversos , Encéfalo/efectos de los fármacos , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/enzimología , Inhibidores Enzimáticos/efectos adversos , Conducta Alimentaria/efectos de los fármacos , Conducta Alimentaria/fisiología , Memoria/efectos de los fármacos , Lóbulo Parietal/efectos de los fármacos , Lóbulo Parietal/enzimología , Proteína Quinasa C/antagonistas & inhibidores , Ratas , Ratas Wistar , Gusto/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA