Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biotechnol Appl Biochem ; 65(1): 46-53, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28926141

RESUMEN

Aromatase catalyzes the biosynthesis of estrogens from androgens. Owing to the physiological importance of this conversion of lipophilic substrates, the interaction with the lipid bilayer for this cytochrome P450 is crucial for its dynamics that must allow an easy access to substrates and inhibitors. Here, the aromatase-anastrozole interaction is studied by combining computational methods to identify possible access/egress routes with the protein inserted in the membrane and experimental tools aimed at the investigation of the effect of the inhibitor on the protein conformation. By means of molecular dynamics simulations of the protein inserted in the membrane, two channels, not detected in the starting crystal structure, are found after a 20-nSec simulation. Trypsin digestion on the recombinant protein shows that the enzyme is strongly protected by the presence of the substrate and even more by the inhibitor. DSC experiments show an increase in the melting temperature of the protein in complex with the substrate (49.3 °C) and the inhibitor (58.7 °C) compared to the ligand-free enzyme (45.9 °C), consistent with a decrease of flexibility of the protein. The inhibitor anastrozole enters the active site of the protein through a channel different from that used from the substrate and promotes a conformational change that stiffens the protein conformation and decreases the protein-protein interaction between different aromatase molecules.


Asunto(s)
Aromatasa/química , Simulación de Dinámica Molecular , Nitrilos/química , Triazoles/química , Anastrozol , Aromatasa/metabolismo , Humanos , Ligandos , Nitrilos/metabolismo , Estructura Cuaternaria de Proteína , Triazoles/metabolismo
2.
Arch Biochem Biophys ; 602: 106-115, 2016 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-26718083

RESUMEN

This paper reports the structure of the double mutant Asp251Gly/Gln307His (named A2) generated by random mutagenesis, able to produce 4'-hydroxydiclofenac, 2-hydroxyibuprofen and 4-hydroxytolbutamide from diclofenac, ibuprofen and tolbutamide, respectively. The 3D structure of the substrate-free mutant shows a conformation similar to the closed one found in the substrate-bound wild type enzyme, but with a higher degree of disorder in the region of the G-helix and F-G loop. This is due to the mutation Asp251Gly that breaks the salt bridge between Aps251 on I-helix and Lys224 on G-helix, allowing the G-helix to move away from I-helix and conferring a higher degree of flexibility to this element. This subtle structural change is accompanied by long-range structural rearrangements of the active site with the rotation of Phe87 and a reorganization of catalytically important water molecules. The impact of these structural features on thermal stability, reduction potential and electron transfer is investigated. The data demonstrate that a single mutation far from the active site triggers an increase in protein flexibility in a key region, shifting the conformational equilibrium toward the closed form that is ready to accept electrons and enter the P450 catalytic cycle as soon as a substrate is accepted.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/ultraestructura , Sistema Enzimático del Citocromo P-450/química , Sistema Enzimático del Citocromo P-450/ultraestructura , Diclofenaco/química , Ibuprofeno/química , Simulación del Acoplamiento Molecular/métodos , NADPH-Ferrihemoproteína Reductasa/química , NADPH-Ferrihemoproteína Reductasa/ultraestructura , Tolbutamida/química , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Sitios de Unión , Simulación por Computador , Sistema Enzimático del Citocromo P-450/genética , Activación Enzimática , Datos de Secuencia Molecular , Mutación/genética , NADPH-Ferrihemoproteína Reductasa/genética , Unión Proteica , Conformación Proteica , Relación Estructura-Actividad
3.
Protein Pept Lett ; 19(6): 592-5, 2012 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-22519530

RESUMEN

The Saccaromices cerevisiae D-serine dehydratase is a pyridoxal 5'-phosphate dependent enzyme that requires zinc for its function. It catalyses the conversion of D-serine into pyruvate and ammonia with the K(m) and k(cat) values of 0.39 mM and 13.1 s(-1) respectively. In this work, a new methodology for monitoring D-serine is presented. Our results show that this enzyme could be successfully used as a biological probe for detection of D-serine via fluorescence spectroscopy.


Asunto(s)
Técnicas Biosensibles/métodos , Hidroliasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Absorción , Fluoresceína/química , Colorantes Fluorescentes/química , Hidroliasas/química , Modelos Moleculares , Fosfato de Piridoxal/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Serina/análisis , Serina/química , Serina/metabolismo , Espectrometría de Fluorescencia/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA