Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Elife ; 122023 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-37272619

RESUMEN

WDR62 is a spindle pole-associated scaffold protein with pleiotropic functions. Recessive mutations in WDR62 cause structural brain abnormalities and account for the second most common cause of autosomal recessive primary microcephaly (MCPH), indicating WDR62 as a critical hub for human brain development. Here, we investigated WDR62 function in corticogenesis through the analysis of a C-terminal truncating mutation (D955AfsX112). Using induced Pluripotent Stem Cells (iPSCs) obtained from a patient and his unaffected parent, as well as isogenic corrected lines, we generated 2D and 3D models of human neurodevelopment, including neuroepithelial stem cells, cerebro-cortical progenitors, terminally differentiated neurons, and cerebral organoids. We report that WDR62 localizes to the Golgi apparatus during interphase in cultured cells and human fetal brain tissue, and translocates to the mitotic spindle poles in a microtubule-dependent manner. Moreover, we demonstrate that WDR62 dysfunction impairs mitotic progression and results in alterations of the neurogenic trajectories of iPSC neuroderivatives. In summary, impairment of WDR62 localization and function results in severe neurodevelopmental abnormalities, thus delineating new mechanisms in the etiology of MCPH.


Asunto(s)
Proteínas de Ciclo Celular , Aparato de Golgi , Microcefalia , Proteínas del Tejido Nervioso , Polos del Huso , Humanos , Microcefalia/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas de Ciclo Celular/metabolismo , Masculino , Células Madre Pluripotentes Inducidas , Mitosis , Niño , Adolescente
3.
Front Neuroanat ; 17: 1130729, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37139179

RESUMEN

The vision of astroglia as a bare scaffold to neuronal circuitry has been largely overturned. Astrocytes exert a neurotrophic function, but also take active part in supporting synaptic transmission and in calibrating blood circulation. Many aspects of their functioning have been unveiled from studies conducted in murine models, however evidence is showing many differences between mouse and human astrocytes starting from their development and encompassing morphological, transcriptomic and physiological variations when they achieve complete maturation. The evolutionary race toward superior cognitive abilities unique to humans has drastically impacted neocortex structure and, together with neuronal circuitry, astrocytes have also been affected with the acquisition of species-specific properties. In this review, we summarize diversities between murine and human astroglia, with a specific focus on neocortex, in a panoramic view that starts with their developmental origin to include all structural and molecular differences that mark the uniqueness of human astrocytes.

4.
Front Cell Neurosci ; 16: 858347, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35573835

RESUMEN

As microtubule-organizing centers (MTOCs), centrosomes play a pivotal role in cell division, neurodevelopment and neuronal maturation. Among centrosomal proteins, centrin-2 (CETN2) also contributes to DNA repair mechanisms which are fundamental to prevent genomic instability during neural stem cell pool expansion. Nevertheless, the expression profile of CETN2 in human neural stem cells and their progeny is currently unknown. To address this question, we interrogated a platform of human neuroepithelial stem (NES) cells derived from post mortem developing brain or established from pluripotent cells and demonstrated that while CETN2 retains its centrosomal location in proliferating NES cells, its expression pattern changes upon differentiation. In particular, we found that CETN2 is selectively expressed in mature astrocytes with a broad cytoplasmic distribution. We then extended our findings on human autoptic nervous tissue samples. We investigated CETN2 distribution in diverse anatomical areas along the rostro-caudal neuraxis and pointed out a peculiar topography of CETN2-labeled astrocytes in humans which was not appreciable in murine tissues, where CETN2 was mostly confined to ependymal cells. As a prototypical condition with glial overproliferation, we also explored CETN2 expression in glioblastoma multiforme (GBM), reporting a focal concentration of CETN2 in neoplastic astrocytes. This study expands CETN2 localization beyond centrosomes and reveals a unique expression pattern that makes it eligible as a novel astrocytic molecular marker, thus opening new roads to glial biology and human neural conditions.

5.
Int J Mol Sci ; 22(6)2021 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-33799461

RESUMEN

Small extracellular vesicles have been intensively studied as a source of biomarkers in neurodegenerative disorders. The possibility to isolate neuron-derived small extracellular vesicles (NDsEV) from blood represents a potential window into brain pathological processes. To date, the absence of sensitive NDsEV isolation and full proteome characterization methods has meant their protein content has been underexplored, particularly for individual patients. Here, we report a rapid method based on an immunoplate covalently coated with mouse monoclonal anti-L1CAM antibody for the isolation and the proteome characterization of plasma-NDsEV from individual Parkinson's disease (PD) patients. We isolated round-shaped vesicles with morphological characteristics consistent with exosomes. On average, 349 ± 38 protein groups were identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis, 20 of which are annotated in the Human Protein Atlas as being highly expressed in the brain, and 213 were shared with a reference NDsEV dataset obtained from cultured human neurons. Moreover, this approach enabled the identification of 23 proteins belonging to the Parkinson disease KEGG pathway, as well as proteins previously reported as PD circulating biomarkers.


Asunto(s)
Biomarcadores/sangre , Vesículas Extracelulares/genética , Enfermedad de Parkinson/sangre , Proteoma/genética , Cromatografía Liquida , Exosomas/metabolismo , Vesículas Extracelulares/metabolismo , Humanos , Neuronas/metabolismo , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patología , Proteómica , Espectrometría de Masas en Tándem
6.
Cells ; 9(8)2020 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-32806773

RESUMEN

Building and functioning of the human brain requires the precise orchestration and execution of myriad molecular and cellular processes, across a multitude of cell types and over an extended period of time. Dysregulation of these processes affects structure and function of the brain and can lead to neurodevelopmental, neurological, or psychiatric disorders. Multiple environmental stimuli affect neural stem cells (NSCs) at several levels, thus impairing the normal human neurodevelopmental program. In this review article, we will delineate the main mechanisms of infection adopted by several neurotropic pathogens, and the selective NSC vulnerability. In particular, TORCH agents, i.e., Toxoplasma gondii, others (including Zika virus and Coxsackie virus), Rubella virus, Cytomegalovirus, and Herpes simplex virus, will be considered for their devastating effects on NSC self-renewal with the consequent neural progenitor depletion, the cellular substrate of microcephaly. Moreover, new evidence suggests that some of these agents may also affect the NSC progeny, producing long-term effects in the neuronal lineage. This is evident in the paradigmatic example of the neurodegeneration occurring in Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer/parasitología , Enfermedad de Alzheimer/virología , Microcefalia/parasitología , Microcefalia/virología , Células-Madre Neurales/parasitología , Células-Madre Neurales/virología , Trastornos del Neurodesarrollo/parasitología , Trastornos del Neurodesarrollo/virología , Animales , Infecciones por Virus ADN/complicaciones , Infecciones por Virus ADN/virología , Virus ADN/patogenicidad , Interacciones Huésped-Patógeno , Humanos , Ratones , Infecciones por Virus ARN/complicaciones , Infecciones por Virus ARN/virología , Virus ARN/patogenicidad , Toxoplasma/patogenicidad , Toxoplasmosis/parasitología , Virulencia
7.
Nat Commun ; 9(1): 3419, 2018 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-30143638

RESUMEN

Traumatic spinal cord injury results in persistent disability due to disconnection of surviving neural elements. Neural stem cell transplantation has been proposed as a therapeutic option, but optimal cell type and mechanistic aspects remain poorly defined. Here, we describe robust engraftment into lesioned immunodeficient mice of human neuroepithelial stem cells derived from the developing spinal cord and maintained in self-renewing adherent conditions for long periods. Extensive elongation of both graft and host axons occurs. Improved functional recovery after transplantation depends on neural relay function through the grafted neurons, requires the matching of neural identity to the anatomical site of injury, and is accompanied by expression of specific marker proteins. Thus, human neuroepithelial stem cells may provide an anatomically specific relay function for spinal cord injury recovery.


Asunto(s)
Células-Madre Neurales/citología , Regeneración de la Medula Espinal/fisiología , Animales , Axones/metabolismo , Diferenciación Celular/fisiología , Línea Celular , Supervivencia Celular/fisiología , Células Cultivadas , Femenino , Humanos , Masculino , Ratones , Células-Madre Neurales/metabolismo , Médula Espinal/citología , Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/terapia , Trasplante de Células Madre
8.
Neurosci Lett ; 652: 25-34, 2017 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-28007647

RESUMEN

Spinal cord injury is currently incurable. Treatment is limited to minimizing secondary complications and maximizing residual function by rehabilitation. Neurologic recovery is prevented by the poor intrinsic regenerative capacity of neurons in the adult central nervous system and by the presence of growth inhibitors in the adult brain and spinal cord. Here we identify three approaches to rewire the spinal cord after injury: axonal regeneration (direct endogenous reconnection), axonal sprouting (indirect endogenous reconnection) and neural stem cell transplantation (indirect exogenous reconnection). Regeneration and sprouting of axonal fibers can be both enhanced through the neutralization of myelin- and extracellular matrix-associated inhibitors described in the first part of this review. Alternatively, in the second part we focus on the formation of a novel circuit through the grafting of neural stem cells in the lesion site. Transplanted neural stem cells differentiate in vivo into neurons and glial cells which form an intermediate station between the rostral and caudal segment of the recipient spinal cord. In particular, here we describe how neural stem cells-derived neurons are endowed with the ability to extend long-distance axons to regain the transmission of motor and sensory information.


Asunto(s)
Traumatismos de la Médula Espinal/terapia , Médula Espinal/fisiopatología , Animales , Axones/patología , Axones/fisiología , Diferenciación Celular , Humanos , Células-Madre Neurales/citología , Células-Madre Neurales/trasplante , Neuroglía/patología , Neuronas/patología , Médula Espinal/patología , Traumatismos de la Médula Espinal/patología , Traumatismos de la Médula Espinal/fisiopatología , Traumatismos de la Médula Espinal/rehabilitación , Regeneración de la Medula Espinal , Transmisión Sináptica
9.
Cell Rep ; 16(10): 2576-2592, 2016 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-27568284

RESUMEN

The mechanisms underlying Zika virus (ZIKV)-related microcephaly and other neurodevelopment defects remain poorly understood. Here, we describe the derivation and characterization, including single-cell RNA-seq, of neocortical and spinal cord neuroepithelial stem (NES) cells to model early human neurodevelopment and ZIKV-related neuropathogenesis. By analyzing human NES cells, organotypic fetal brain slices, and a ZIKV-infected micrencephalic brain, we show that ZIKV infects both neocortical and spinal NES cells as well as their fetal homolog, radial glial cells (RGCs), causing disrupted mitoses, supernumerary centrosomes, structural disorganization, and cell death. ZIKV infection of NES cells and RGCs causes centrosomal depletion and mitochondrial sequestration of phospho-TBK1 during mitosis. We also found that nucleoside analogs inhibit ZIKV replication in NES cells, protecting them from ZIKV-induced pTBK1 relocalization and cell death. We established a model system of human neural stem cells to reveal cellular and molecular mechanisms underlying neurodevelopmental defects associated with ZIKV infection and its potential treatment.


Asunto(s)
Mitosis , Células-Madre Neurales/enzimología , Células-Madre Neurales/virología , Células Neuroepiteliales/virología , Neuroglía/virología , Proteínas Serina-Treonina Quinasas/metabolismo , Virus Zika/patogenicidad , Encéfalo/embriología , Encéfalo/patología , Encéfalo/virología , Muerte Celular/efectos de los fármacos , Centrosoma/efectos de los fármacos , Centrosoma/metabolismo , Feto/virología , Perfilación de la Expresión Génica , Humanos , Inmunidad Innata/efectos de los fármacos , Microcefalia/patología , Microcefalia/virología , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Mitosis/efectos de los fármacos , Neocórtex/patología , Células-Madre Neurales/inmunología , Células-Madre Neurales/ultraestructura , Células Neuroepiteliales/efectos de los fármacos , Células Neuroepiteliales/inmunología , Células Neuroepiteliales/ultraestructura , Neuroglía/patología , Neuroglía/ultraestructura , Neuronas/efectos de los fármacos , Neuronas/patología , Neuronas/virología , Fármacos Neuroprotectores/farmacología , Nucleósidos/farmacología , Fosforilación/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Médula Espinal/patología , Transcripción Genética/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Virus Zika/efectos de los fármacos , Virus Zika/fisiología , Virus Zika/ultraestructura , Infección por el Virus Zika/patología , Infección por el Virus Zika/virología , Tirosina Quinasa del Receptor Axl
10.
Cell Stem Cell ; 17(6): 719-734, 2015 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-26526726

RESUMEN

Transplantation of GABAergic interneurons (INs) can provide long-term functional benefits in animal models of epilepsy and other neurological disorders. Whereas GABAergic INs can be differentiated from embryonic stem cells, alternative sources of GABAergic INs may be more tractable for disease modeling and transplantation. We identified five factors (Foxg1, Sox2, Ascl1, Dlx5, and Lhx6) that convert mouse fibroblasts into induced GABAergic INs (iGABA-INs) possessing molecular signatures of telencephalic INs. Factor overexpression activates transcriptional networks required for GABAergic fate specification. iGABA-INs display progressively maturing firing patterns comparable to cortical INs, form functional synapses, and release GABA. Importantly, iGABA-INs survive and mature upon being grafted into mouse hippocampus. Optogenetic stimulation demonstrated functional integration of grafted iGABA-INs into host circuitry, triggering inhibition of host granule neuron activity. These five factors also converted human cells into functional GABAergic INs. These properties suggest that iGABA-INs have potential for disease modeling and cell-based therapeutic approaches to neurological disorders.


Asunto(s)
Reprogramación Celular , Fibroblastos/citología , Interneuronas/citología , Prosencéfalo/citología , Ácido gamma-Aminobutírico/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Diferenciación Celular , Linaje de la Célula , Técnicas de Cocultivo , Células Madre Embrionarias/citología , Factores de Transcripción Forkhead/metabolismo , Perfilación de la Expresión Génica , Hipocampo/citología , Humanos , Ratones , Proteínas del Tejido Nervioso/metabolismo , Neuronas/citología , Factores de Transcripción SOXB1/metabolismo , Sinapsis/metabolismo , Telencéfalo/citología , Transcripción Genética
11.
J Clin Invest ; 124(7): 3215-29, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24937431

RESUMEN

Direct lineage reprogramming through genetic-based strategies enables the conversion of differentiated somatic cells into functional neurons and distinct neuronal subtypes. Induced dopaminergic (iDA) neurons can be generated by direct conversion of skin fibroblasts; however, their in vivo phenotypic and functional properties remain incompletely understood, leaving their impact on Parkinson's disease (PD) cell therapy and modeling uncertain. Here, we determined that iDA neurons retain a transgene-independent stable phenotype in culture and in animal models. Furthermore, transplanted iDA neurons functionally integrated into host neuronal tissue, exhibiting electrically excitable membranes, synaptic currents, dopamine release, and substantial reduction of motor symptoms in a PD animal model. Neuronal cell replacement approaches will benefit from a system that allows the activity of transplanted neurons to be controlled remotely and enables modulation depending on the physiological needs of the recipient; therefore, we adapted a DREADD (designer receptor exclusively activated by designer drug) technology for remote and real-time control of grafted iDA neuronal activity in living animals. Remote DREADD-dependent iDA neuron activation markedly enhanced the beneficial effects in transplanted PD animals. These data suggest that iDA neurons have therapeutic potential as a cell replacement approach for PD and highlight the applicability of pharmacogenetics for enhancing cellular signaling in reprogrammed cell-based approaches.


Asunto(s)
Neuronas Dopaminérgicas/trasplante , Trastornos Parkinsonianos/terapia , Animales , Encéfalo/patología , Encéfalo/fisiopatología , Transdiferenciación Celular/genética , Clozapina/análogos & derivados , Clozapina/farmacología , Drogas de Diseño , Modelos Animales de Enfermedad , Dopamina/metabolismo , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/fisiología , Fenómenos Electrofisiológicos , Femenino , Humanos , Masculino , Ratones , Ratones Noqueados , Trastornos Parkinsonianos/patología , Trastornos Parkinsonianos/fisiopatología , Ratas , Ratas Transgénicas
12.
Stem Cells Transl Med ; 2(6): 473-9, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23658252

RESUMEN

Current protocols for in vitro differentiation of human induced pluripotent stem cells (hiPSCs) to generate dopamine (DA) neurons are laborious and time-expensive. In order to accelerate the overall process, we have established a fast protocol by expressing the developmental transcription factors ASCL1, NURR1, and LMX1A. With this method, we were able to generate mature and functional dopaminergic neurons in as few as 21 days, skipping all the intermediate steps for inducting and selecting embryoid bodies and rosette-neural precursors. Strikingly, the resulting neuronal conversion process was very proficient, with an overall efficiency that was more than 93% of all the coinfected cells. hiPSC-derived DA neurons expressed all the critical molecular markers of the DA molecular machinery and exhibited sophisticated functional features including spontaneous electrical activity and dopamine release. This one-step protocol holds important implications for in vitro disease modeling and is particularly amenable for exploitation in high-throughput screening protocols.


Asunto(s)
Linaje de la Célula/fisiología , Dopamina/metabolismo , Neuronas Dopaminérgicas/citología , Neuronas Dopaminérgicas/fisiología , Células Madre Pluripotentes Inducidas/citología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Biomarcadores/metabolismo , Diferenciación Celular , Células Cultivadas , Regulación del Desarrollo de la Expresión Génica , Vectores Genéticos , Humanos , Células Madre Pluripotentes Inducidas/fisiología , Proteínas con Homeodominio LIM/genética , Proteínas con Homeodominio LIM/metabolismo , Lentivirus/genética , Potenciales de la Membrana/fisiología , Miembro 2 del Grupo A de la Subfamilia 4 de Receptores Nucleares/genética , Miembro 2 del Grupo A de la Subfamilia 4 de Receptores Nucleares/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo
13.
Neuropharmacology ; 66: 179-86, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22507666

RESUMEN

Group I metabotropic glutamate receptors (mGluRs), which comprise mGlu1Rs and mGlu5Rs, are enriched in striatal medium spiny neurons (MSNs), where they modulate glutamatergic transmission. Here, we have examined the effect of group I mGluRs on the regulation of the state of phosphorylation of the GluA1 subunit of the AMPA glutamate receptor. We found that incubation of mouse striatal slices with the group I mGluR agonist (R,S)-3,5-dihydroxyphenylglycine (DHPG) promotes GluA1 phosphorylation at the cAMP-dependent protein kinase (PKA) site, Ser845. This effect is prevented by 2-methyl-6-(phenylethynyl)pyridine hydrochloride (MPEP), a selective mGlu5R antagonist. The increase in GluA1 phosphorylation produced by DHPG is also prevented by blockade of adenosine A2A receptors (A2ARs), which are known to promote cAMP signaling specifically in striatopallidal MSNs, as well as by enzymatic degradation of endogenous adenosine, achieved with adenosine deaminase. The ability of DHPG to increase PKA-dependent phosphorylation of GluA1 depends on concomitant activation of the dopamine- and cAMP-regulated phosphoprotein of 32kDa (DARPP-32). Thus, inactivation of the PKA phosphorylation site of DARPP-32 abolishes the effect of DHPG. Moreover, cell-specific knock out of DARPP-32 in striatopallidal, but not in striatonigral, MSNs prevents the increase in Ser845 phosphorylation induced by DHPG. These results indicate that activation of mGlu5Rs promotes PKA/DARPP-32-dependent phosphorylation of downstream target proteins in striatopallidal MSNs and that this effect is exerted via potentiation of tonic A2AR transmission. This article is part of a Special Issue entitled 'Metabotropic Glutamate Receptors'.


Asunto(s)
Cuerpo Estriado/fisiología , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Fosfoproteína 32 Regulada por Dopamina y AMPc/metabolismo , Neuronas/fisiología , Receptores AMPA/metabolismo , Receptores de Glutamato Metabotrópico/fisiología , Transducción de Señal/fisiología , Animales , Cuerpo Estriado/efectos de los fármacos , Fosfoproteína 32 Regulada por Dopamina y AMPc/genética , Agonistas de Aminoácidos Excitadores/farmacología , Antagonistas de Aminoácidos Excitadores/farmacología , Glicina/análogos & derivados , Glicina/antagonistas & inhibidores , Glicina/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/efectos de los fármacos , Fosforilación/efectos de los fármacos , Fosforilación/fisiología , Antagonistas de Receptores Purinérgicos P1/farmacología , Piridinas/farmacología , Receptor de Adenosina A2A/fisiología , Receptor del Glutamato Metabotropico 5 , Receptores de Dopamina D1/fisiología , Receptores de Dopamina D2/agonistas , Receptores de Dopamina D2/fisiología , Receptores de Glutamato Metabotrópico/agonistas , Resorcinoles/antagonistas & inhibidores , Resorcinoles/farmacología , Transducción de Señal/efectos de los fármacos , Triazinas/farmacología , Triazoles/farmacología
14.
J Mol Cell Biol ; 3(6): 322-3, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22021656

RESUMEN

Direct conversion of human skin fibroblasts into induced neuronal (iN) cells has been recently achieved by using different combinations of transcription factors eventually associated with microRNAs. These findings lay the ground for a straightforward and efficient generation of human neurons in vitro with elaborated functional properties instrumental for disease modeling and cell-based approaches of brain repair.


Asunto(s)
Diferenciación Celular , Fibroblastos/citología , Neuronas/citología , Animales , Diferenciación Celular/genética , Fibroblastos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Humanos , Piel/citología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
15.
Nature ; 476(7359): 224-7, 2011 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-21725324

RESUMEN

Transplantation of dopaminergic neurons can potentially improve the clinical outcome of Parkinson's disease, a neurological disorder resulting from degeneration of mesencephalic dopaminergic neurons. In particular, transplantation of embryonic-stem-cell-derived dopaminergic neurons has been shown to be efficient in restoring motor symptoms in conditions of dopamine deficiency. However, the use of pluripotent-derived cells might lead to the development of tumours if not properly controlled. Here we identified a minimal set of three transcription factors--Mash1 (also known as Ascl1), Nurr1 (also known as Nr4a2) and Lmx1a--that are able to generate directly functional dopaminergic neurons from mouse and human fibroblasts without reverting to a progenitor cell stage. Induced dopaminergic (iDA) cells release dopamine and show spontaneous electrical activity organized in regular spikes consistent with the pacemaker activity featured by brain dopaminergic neurons. The three factors were able to elicit dopaminergic neuronal conversion in prenatal and adult fibroblasts from healthy donors and Parkinson's disease patients. Direct generation of iDA cells from somatic cells might have significant implications for understanding critical processes for neuronal development, in vitro disease modelling and cell replacement therapies.


Asunto(s)
Diferenciación Celular , Reprogramación Celular , Dopamina/metabolismo , Fibroblastos/citología , Neuronas/citología , Neuronas/metabolismo , Potenciales de Acción , Animales , Animales Recién Nacidos , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Células Cultivadas , Reprogramación Celular/genética , Reprogramación Celular/fisiología , Embrión de Mamíferos/citología , Fibroblastos/metabolismo , Perfilación de la Expresión Génica , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Proteínas con Homeodominio LIM , Ratones , Miembro 2 del Grupo A de la Subfamilia 4 de Receptores Nucleares/genética , Miembro 2 del Grupo A de la Subfamilia 4 de Receptores Nucleares/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Enfermedad de Parkinson/patología , Técnicas de Placa-Clamp , Medicina Regenerativa , Piel/citología , Factores de Transcripción
16.
J Pharmacol Exp Ther ; 320(1): 465-74, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17062616

RESUMEN

In this study, we aimed at establishing whether two previously identified thyroid disruptors, the insecticide 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane (DDT) and Aroclor 1254 (a complex mixture of polychlorinated water), may inhibit thyrotropin (TSH) receptor (TSHr) activity. DDT and Aroclor 1254 were shown to inhibit both the basal and bovine TSH (bTSH)-stimulated accumulation of cAMP in Chinese hamster ovary (CHO)-K1 cells stably transfected with the TSHr. Furthermore, both DDT and Aroclor 1254 did indeed prevent cAMP accumulation, as induced by the constitutive activity of a point mutant TSHr(I486M) transiently transfected in African green monkey kidney fibroblast (COS)-7 cells. Neither trypsin digestion of the extracellular domain (ECD) nor deletion of the ECD in a mutant TSHr trunk transiently transfected in COS-7 cells counteracted the inhibitory activity of DDT and Aroclor 1254. DDT exerted a weak inhibitory activity against forskolin in both CHO-K1 and COS-7 cells, whereas it was nil against the agonists dopamine and 5'-(N-ethyl-carboxamido)-adenosine (NECA) in CHO cells stably transfected with the dopamine D1 receptor and in COS-7 cells transiently transfected with the adenosine type 2a receptor (A2a) receptor. Furthermore, DDT was inactive against the stimulation by isoproterenol of the endogenously expressed beta2 adrenergic receptor in COS-7 cells. Conversely, Aroclor 1254 inhibited completely forskolin activity in CHO-K1 cells but not in COS-7 cells. Furthermore, it did not prevent accumulation of cAMP as induced by NECA in A2a transfected cells. The analog of DDT, diphenylethylene, was inactive against bTSH-induced increase in cAMP in CHO-K1 cells stably transfected with the TSHr. We interpreted these results as indicating that DDT and possibly Aroclor 1254 may have an uncompetitive inverse agonist activity for the TSHr.


Asunto(s)
DDT/farmacología , Receptores de Tirotropina/antagonistas & inhibidores , Adenosina-5'-(N-etilcarboxamida)/farmacología , Adenilil Ciclasas/metabolismo , Animales , Compuestos de Bencidrilo , Células CHO , Células COS , Chlorocebus aethiops , Colforsina/farmacología , Cricetinae , AMP Cíclico/metabolismo , Fenoles/farmacología , Receptores de Tirotropina/fisiología , Tirotropina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...