Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Heliyon ; 10(6): e27429, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38509925

RESUMEN

The hippocampus and amygdala are the first brain regions to show early signs of Alzheimer's Disease (AD) pathology. AD is preceded by a prodromal stage known as Mild Cognitive Impairment (MCI), a crucial crossroad in the clinical progression of the disease. The topographical development of AD has been the subject of extended investigation. However, it is still largely unknown how the transition from MCI to AD affects specific hippocampal and amygdala subregions. The present study is set to answer that question. We analyzed data from 223 subjects: 75 healthy controls, 52 individuals with MCI, and 96 AD patients obtained from the ADNI. The MCI group was further divided into two subgroups depending on whether individuals in the 48 months following the diagnosis either remained stable (N = 21) or progressed to AD (N = 31). A MANCOVA test evaluated group differences in the volume of distinct amygdala and hippocampal subregions obtained from magnetic resonance images. Subsequently, a stepwise linear discriminant analysis (LDA) determined which combination of magnetic resonance imaging parameters was most effective in predicting the conversion from MCI to AD. The predictive performance was assessed through a Receiver Operating Characteristic analysis. AD patients displayed widespread subregional atrophy. MCI individuals who progressed to AD showed selective atrophy of the hippocampal subiculum and tail compared to stable MCI individuals, who were undistinguishable from healthy controls. Converter MCI showed atrophy of the amygdala's accessory basal, central, and cortical nuclei. The LDA identified the hippocampal subiculum and the amygdala's lateral and accessory basal nuclei as significant predictors of MCI conversion to AD. The analysis returned a sensitivity value of 0.78 and a specificity value of 0.62. These findings highlight the importance of targeted assessments of distinct amygdala and hippocampus subregions to help dissect the clinical and pathophysiological development of the MCI to AD transition.

2.
Transl Psychiatry ; 13(1): 384, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38092757

RESUMEN

The PD-DLB psychosis complex found in Parkinson's disease (PD) and Dementia with Lewy Bodies (DLB) includes hallucinations, Somatic Symptom/Functional Disorders, and delusions. These disorders exhibit similar presentation patterns and progression. Mechanisms at the root of these symptoms also share similarities with processes promoting altered states of consciousness found in Rapid Eye Movement sleep, psychiatric disorders, or the intake of psychedelic compounds. We propose that these mechanisms find a crucial driver and trigger in the dysregulated activity of high-order thalamic nuclei set in motion by ThalamoCortical Dysrhythmia (TCD). TCD generates the loss of finely tuned cortico-cortical modulations promoted by the thalamus and unleashes the aberrant activity of the Default Mode Network (DMN). TCD moves in parallel with altered thalamic filtering of external and internal information. The process produces an input overload to the cortex, thereby exacerbating DMN decoupling from task-positive networks. These phenomena alter the brain metastability, creating dreamlike, dissociative, or altered states of consciousness. In support of this hypothesis, mind-altering psychedelic drugs also modulate thalamic-cortical pathways. Understanding the pathophysiological background of these conditions provides a conceptual bridge between neurology and psychiatry, thereby helping to generate a promising and converging area of investigation and therapeutic efforts.


Asunto(s)
Alucinógenos , Enfermedad por Cuerpos de Lewy , Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Trastornos Psicóticos , Humanos , Alucinógenos/farmacología , Enfermedad por Cuerpos de Lewy/tratamiento farmacológico , Enfermedad por Cuerpos de Lewy/diagnóstico , Enfermedad por Cuerpos de Lewy/metabolismo , Enfermedades Neurodegenerativas/tratamiento farmacológico , Tálamo , Enfermedad de Parkinson/tratamiento farmacológico
3.
Alzheimers Dement (N Y) ; 9(4): e12436, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38053753

RESUMEN

Introduction: Accumulating evidence indicates that the amygdala exhibits early signs of Alzheimer's disease (AD) pathology. However, it is still unknown whether the atrophy of distinct subfields of the amygdala also participates in the transition from healthy cognition to mild cognitive impairment (MCI). Methods: Our sample was derived from the AD Neuroimaging Initiative 3 and consisted of 97 cognitively healthy (HC) individuals, sorted into two groups based on their clinical follow-up: 75 who remained stable (s-HC) and 22 who converted to MCI within 48 months (c-HC). Anatomical magnetic resonance (MR) images were analyzed using a semi-automatic approach that combines probabilistic methods and a priori information from ex vivo MR images and histology to segment and obtain quantitative structural metrics for different amygdala subfields in each participant. Spearman's correlations were performed between MR measures and baseline and longitudinal neuropsychological measures. We also included anatomical measurements of the whole amygdala, the hippocampus, a key target of AD-related pathology, and the whole cortical thickness as a test of spatial specificity. Results: Compared with s-HC individuals, c-HC subjects showed a reduced right amygdala volume, whereas no significant difference was observed for hippocampal volumes or changes in cortical thickness. In the amygdala subfields, we observed selected atrophy patterns in the basolateral nuclear complex, anterior amygdala area, and transitional area. Macro-structural alterations in these subfields correlated with variations of global indices of cognitive performance (measured at baseline and the 48-month follow-up), suggesting that amygdala changes shape the cognitive progression to MCI. Discussion: Our results provide anatomical evidence for the early involvement of the amygdala in the preclinical stages of AD. Highlights: Amygdala's atrophy marks elderly progression to mild cognitive impairment (MCI).Amygdala's was observed within the basolateral and amygdaloid complexes.Macro-structural alterations were associated with cognitive decline.No atrophy was found in the hippocampus and cortex.

4.
Neuroimage ; 283: 120414, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37858906

RESUMEN

The role of the thalamus in mediating the effects of lysergic acid diethylamide (LSD) was recently proposed in a model of communication and corroborated by imaging studies. However, a detailed analysis of LSD effects on nuclei-resolved thalamocortical connectivity is still missing. Here, in a group of healthy volunteers, we evaluated whether LSD intake alters the thalamocortical coupling in a nucleus-specific manner. Structural and resting-state functional Magnetic Resonance Imaging (MRI) data were acquired in a placebo-controlled study on subjects exposed to acute LSD administration. Structural MRI was used to parcel the thalamus into its constituent nuclei based on individual anatomy. Nucleus-specific changes of resting-state functional MRI (rs-fMRI) connectivity were mapped using a seed-based approach. LSD intake selectively increased the thalamocortical functional connectivity (FC) of the ventral complex, pulvinar, and non-specific nuclei. Functional coupling was increased between these nuclei and sensory cortices that include the somatosensory and auditory networks. The ventral and pulvinar nuclei also exhibited increased FC with parts of the associative cortex that are dense in serotonin type 2A receptors. These areas are hyperactive and hyper-connected upon LSD intake. At subcortical levels, LSD increased the functional coupling among the thalamus's ventral, pulvinar, and non-specific nuclei, but decreased the striatal-thalamic connectivity. These findings unravel some LSD effects on the modulation of subcortical-cortical circuits and associated behavioral outputs.


Asunto(s)
Pulvinar , Tálamo , Humanos , Tálamo/fisiología , Imagen por Resonancia Magnética , Corteza Cerebral/diagnóstico por imagen , Lóbulo Parietal , Vías Nerviosas
5.
Artículo en Inglés | MEDLINE | ID: mdl-37003409

RESUMEN

BACKGROUND: Lysergic acid diethylamide (LSD) is an atypical psychedelic compound that exerts its effects through pleiotropic actions, mainly involving 1A/2A serotoninergic (5-HT) receptor subtypes. However, the mechanisms by which LSD promotes a reorganization of the brain's functional activity and connectivity are still partially unknown. METHODS: Our study analyzed resting-state functional magnetic resonance imaging data acquired from 15 healthy volunteers undergoing LSD single-dose intake. A voxelwise analysis investigated the alterations of the brain's intrinsic functional connectivity and local signal amplitude induced by LSD or by a placebo. Quantitative comparisons assessed the spatial overlap between these 2 indices of functional reorganization and the topography of receptor expression obtained from a publicly available collection of in vivo, whole-brain atlases. Finally, linear regression models explored the relationships between changes in resting-state functional magnetic resonance imaging and behavioral aspects of the psychedelic experience. RESULTS: LSD elicited modifications of the cortical functional architecture that spatially overlapped with the distribution of serotoninergic receptors. Local signal amplitude and functional connectivity increased in regions belonging to the default mode and attention networks associated with high expression of 5-HT2A receptors. These functional changes correlate with the occurrence of simple and complex visual hallucinations. At the same time, a decrease in local signal amplitude and intrinsic connectivity was observed in limbic areas, which are dense with 5-HT1A receptors. CONCLUSIONS: This study provides new insights into the neural processes underlying the brain network reconfiguration induced by LSD. It also identifies a topographical relationship between opposite effects on brain functioning and the spatial distribution of different 5-HT receptors.


Asunto(s)
Alucinógenos , Humanos , Encéfalo , Alucinaciones , Alucinógenos/farmacología , Dietilamida del Ácido Lisérgico/farmacología , Receptores de Serotonina , Serotonina/efectos adversos
6.
Brain Connect ; 13(8): 464-472, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36128806

RESUMEN

Background/Purpose: To investigate the association between the degree of spatial neglect and the changes of brain system segregation (SyS; i.e., the ratio of the extent to which brain networks interact internally and with each other) after stroke. Methods: A cohort of 20 patients with right hemisphere lesion was submitted to neuropsychological assessment as well as to resting-state functional magnetic resonance imaging session at acute stage after stroke. The severity of spatial neglect was quantified using the Center of Cancellation (CoC) scores of the Bells cancellation test. For each patient, resting-state functional connectivity (FC) matrices were assessed by implementing a brain parcellation of nine networks that included the visual network, dorsal attention network (DAN), ventral attention network (VAN), sensorimotor network (SMN), auditory network, cingulo-opercular network, language network, frontoparietal network, and default mode network (DMN). For each patient and each network, we then computed the SyS derived by subtracting the between-network FC from the within-network FC (normalized by the within-network FC). Finally, for each network, the CoC scores were correlated with the SyS. Results: The correlational analyses indicated a negative association between CoC and SyS in the DAN, VAN, SMN, and DMN (q < 0.05 false discovery rate [FDR]-corrected). Patients with more severe spatial neglect exhibited lower SyS and vice versa. Conclusion: The loss of segregation in multiple and specific networks provides a functional framework for the deficits in spatial and nonspatial attention and motor/exploratory ability observed in neglect patients.

7.
Front Hum Neurosci ; 17: 1327276, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38259340

RESUMEN

Functional magnetic resonance imaging (fMRI) based on the Blood Oxygen Level Dependent (BOLD) contrast has been extensively used to map brain activity and connectivity in health and disease. Standard fMRI preprocessing includes different steps to remove confounds unrelated to neuronal activity. First, this narrative review explores how signal fluctuations due to cardiac and respiratory activity, usually considered as "physiological noise" and regressed out from fMRI time series. However, these signal components bear useful information about some mechanisms of brain functioning (e.g., glymphatic clearance) or cerebrovascular compliance in response to arterial pressure waves. Aging and chronic diseases can cause stiffening of the aorta and other main arteries, with a reduced dampening effect resulting in greater transmission of pressure impulses to the brain. Importantly, the continuous hammering of cardiac pulsations can produce local alterations of the mechanical properties of the small cerebral vessels, with a progressive deterioration that ultimately affects neuronal functionality. Second, the review emphasizes how fMRI can study the brain patterns most affected by cardiac pulsations in health and disease with high spatiotemporal resolution, offering the opportunity to identify much more specific risk markers than systemic factors based on measurements of the vascular compliance of large arteries or other global risk factors. In this regard, modern fast fMRI acquisition techniques allow a better characterization of these pulsatile signal components due to reduced aliasing effects, turning what has been traditionally considered as noise in a signal of interest that can be used to develop novel non-invasive biomarkers in different clinical contexts.

8.
Mov Disord ; 37(11): 2226-2235, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36054283

RESUMEN

BACKGROUND: The high co-occurrence of somatic symptom disorder (SSD) in Parkinson's disease (PD) patients suggests overlapping pathophysiology. However, little is known about the neural correlates of SSD and their possible interactions with PD. Existing studies have shown that SSD is associated with reduced task-evoked activity in the medial prefrontal cortex (mPFC), a central node of the default-mode network (DMN). SSD is also associated with abnormal γ-aminobutyric acid (GABA) content, a marker of local inhibitory tone and regional hypoactivity, in the same area when SSD co-occurs with PD. OBJECTIVES: To disentangle the individual and shared effects of SSD and PD on mPFC neurotransmission and connectivity patterns and help disclose the neural mechanisms of comorbidity in the PD population. METHODS: The study cohort included 18 PD patients with SSD (PD + SSD), 18 PD patients, 13 SSD patients who did not exhibit neurologic disorders, and 17 healthy subjects (HC). Proton magnetic resonance (MR) spectroscopy evaluated GABA levels within a volume of interest centered on the mPFC. Resting-state functional MR imaging investigated the region's functional connectivity patterns. RESULTS: Compared to HC or PD groups, the mPFC of SSD subjects exhibited higher GABA levels and connectivity. Higher mPFC connectivity involved DMN regions in SSD patients without PD and regions of the executive and attentional networks (EAN) in patients with PD comorbidity. CONCLUSIONS: Aberrant reconfigurations of connectivity patterns between the mPFC and the EAN are distinct features of the PD + SSD comorbidity. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Síntomas sin Explicación Médica , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/diagnóstico por imagen , Enfermedad de Parkinson/patología , Imagen por Resonancia Magnética/métodos , Corteza Prefrontal , Ácido gamma-Aminobutírico , Mapeo Encefálico , Vías Nerviosas
9.
J Alzheimers Dis ; 85(4): 1639-1655, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34958014

RESUMEN

BACKGROUND: Alzheimer's disease (AD) is a neurodegenerative condition driven by multifactorial etiology. Mild cognitive impairment (MCI) is a transitional condition between healthy aging and dementia. No reliable biomarkers are available to predict the conversion from MCI to AD. OBJECTIVE: To evaluate the use of machine learning (ML) on a wealth of data offered by the Alzheimer's Disease Neuroimaging Initiative (ADNI) and Alzheimer's Disease Metabolomics Consortium (ADMC) database in the prediction of the MCI to AD conversion. METHODS: We implemented an ML-based Random Forest (RF) algorithm to predict conversion from MCI to AD. Data related to the study population (587 MCI subjects) were analyzed by RF as separate or combined features and assessed for classification power. Four classes of variables were considered: neuropsychological test scores, AD-related cerebrospinal fluid (CSF) biomarkers, peripheral biomarkers, and structural magnetic resonance imaging (MRI) variables. RESULTS: The ML-based algorithm exhibited 86% accuracy in predicting the AD conversion of MCI subjects. When assessing the features that helped the most, neuropsychological test scores, MRI data, and CSF biomarkers were the most relevant in the MCI to AD prediction. Peripheral parameters were effective when employed in association with neuropsychological test scores. Age and sex differences modulated the prediction accuracy. AD conversion was more effectively predicted in females and younger subjects. CONCLUSION: Our findings support the notion that AD-related neurodegenerative processes result from the concerted activity of multiple pathological mechanisms and factors that act inside and outside the brain and are dynamically affected by age and sex.


Asunto(s)
Enfermedad de Alzheimer/diagnóstico , Progresión de la Enfermedad , Aprendizaje Automático , Anciano , Algoritmos , Biomarcadores/líquido cefalorraquídeo , Encéfalo/patología , Disfunción Cognitiva/diagnóstico , Bases de Datos Factuales , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Pruebas Neuropsicológicas
10.
J Neurol Sci ; 433: 120017, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-34629180

RESUMEN

The occurrence of Functional Neurological Disorder (FND) and Somatic Symptom Disorder (SSD) in PD was not commonly accepted until recently, despite some evidence that emerged in the pre and early L-Dopa era. More recently, the recognition of FND and SSD were noted to be relevant for the management of PD. FND and SSD appear early in the course of PD, often preceding motor symptoms, may interfere with treatment outcomes, often acquire psychotic features during progression, and are mixed with and often concealed by the progressive cognitive decline. We review the related features from the range of the available reports and discuss theoretical models conceived to explain the potential pathophysiological background of these disorders. Finally, we suggest that FND and SSD should be included among the non-motor symptoms of PD and be considered a prodromal feature in a subset of patients. This article is part of the Special Issue "Parkinsonism across the spectrum of movement disorders and beyond" edited by Joseph Jankovic, Daniel D. Truong and Matteo Bologna.


Asunto(s)
Trastornos de Conversión , Síntomas sin Explicación Médica , Enfermedad de Parkinson , Trastornos Parkinsonianos , Humanos , Enfermedad de Parkinson/epidemiología , Síntomas Prodrómicos
11.
Mov Disord ; 36(12): 2840-2852, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34427338

RESUMEN

BACKGROUND: Patients with bipolar spectrum disorders (BSDs) exhibit an increased risk of Parkinson's disease (PD). OBJECTIVE: The aim is to investigate whether a previous diagnosis of BSDs influences the phenotype of PD. METHODS: Of 2660 PD patients followed for at least 6 years (6-27), 250 (BSD-PD) had BSDs, 6-20 years before PD diagnosis; 48%-43% had a PD or BSD family history, and 34 carried glucocerebrosidase (GBA) and Parkin (PRKN) mutations. The cohort was split into a subset of 213 BSD-PD patients, compared with 426 matched PD patients without BSDs, and a subset of 34 BSD-PD and 79 PD patients carrying GBA or PRKN mutations. Carriers of mutations absent in BSD-PD patients and of synuclein triplication were excluded. Structured clinical interviews and mood disorder questionnaires assessed BSDs. Linear mixed models evaluated the assessment scales over time. Thirteen BSD-PD patients underwent subthalamic nucleus deep brain stimulation (STN-DBS) and were compared with 27 matched STN-DBS-treated PD patients. RESULTS: Compared to PD patients, BSD-PD showed (1) higher frequency of family history of PD (odds ratio [OR] 3.31; 2.32-4.71) and BSDs (OR 6.20; 4.11-9.35) 5); (2) higher incidence of impulse control disorders (hazard ratio [HR] 5.95, 3.89-9.09); (3) higher frequency of functional disorders occurring before PD therapy (HR, 5.67, 3.95-8.15); (4) earlier occurrence of delusions or mild dementia (HR, 7.70, 5.55-10.69; HR, 1.43, 1.16-1.75); and (5) earlier mortality (1.48; 1.11-1.97). Genetic BSD-PD subjects exhibited clinical features indistinguishable from nongenetic BSD-PD subjects. STN-DBS-treated BSD-PD patients showed no improvements in quality of life compared to the control group. CONCLUSIONS: BSDs as a prodrome to PD unfavorably shape their course and are associated with detrimental neuropsychiatric features and treatment outcomes. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Trastorno Bipolar , Estimulación Encefálica Profunda , Enfermedad de Parkinson , Trastorno Bipolar/complicaciones , Trastorno Bipolar/genética , Estimulación Encefálica Profunda/efectos adversos , Humanos , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/genética , Fenotipo , Calidad de Vida
12.
Neurology ; 97(8): e814-e824, 2021 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-34099524

RESUMEN

OBJECTIVE: To evaluate whether orthostatic hypotension (OH) or supine hypertension (SH) is associated with brain atrophy and white matter hyperintensities (WMH), we analyzed clinical and radiologic data from a large multicenter consortium of patients with Parkinson disease (PD) and dementia with Lewy bodies (DLB). METHODS: Supine and orthostatic blood pressure (BP) and structural MRI data were extracted from patients with PD and DLB evaluated at 8 tertiary-referral centers in the United States, Canada, Italy, and Japan. OH was defined as a systolic/diastolic BP fall ≥20/10 mm Hg within 3 minutes of standing from the supine position (severe ≥30/15 mm Hg) and SH as a BP ≥140/90 mm Hg with normal sitting BP. Diagnosis-, age-, sex-, and disease duration-adjusted differences in global and regional cerebral atrophy and WMH were appraised with validated semiquantitative rating scales. RESULTS: A total of 384 patients (310 with PD, 74 with DLB) met eligibility criteria, of whom 44.3% (n = 170) had OH, including 24.7% (n = 42) with severe OH and 41.7% (n = 71) with SH. OH was associated with global brain atrophy (p = 0.004) and regional atrophy involving the anterior-temporal (p = 0.001) and mediotemporal (p = 0.001) regions, greater in severe vs nonsevere OH (p = 0.001). The WMH burden was similar in those with and without OH (p = 0.49). SH was not associated with brain atrophy (p = 0.59) or WMH (p = 0.72). CONCLUSIONS: OH, but not SH, was associated with cerebral atrophy in Lewy body disorders, with prominent temporal region involvement. Neither OH nor SH was associated with WMH.


Asunto(s)
Hipotensión Ortostática/fisiopatología , Enfermedad por Cuerpos de Lewy/patología , Enfermedad de Parkinson/patología , Lóbulo Temporal/patología , Sustancia Blanca/patología , Anciano , Anciano de 80 o más Años , Atrofia/patología , Femenino , Humanos , Hipotensión Ortostática/etiología , Enfermedad por Cuerpos de Lewy/complicaciones , Enfermedad por Cuerpos de Lewy/diagnóstico por imagen , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/diagnóstico por imagen , Índice de Severidad de la Enfermedad , Lóbulo Temporal/diagnóstico por imagen , Sustancia Blanca/diagnóstico por imagen
13.
Curr Alzheimer Res ; 17(9): 790-804, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33272186

RESUMEN

Brain aging and aging-related neurodegenerative disorders are posing a significant challenge for health systems worldwide. To date, most of the therapeutic efforts aimed at counteracting dementiarelated behavioral and cognitive impairment have been focused on addressing putative determinants of the disease, such as ß-amyloid or tau. In contrast, relatively little attention has been paid to pharmacological interventions aimed at restoring or promoting the synaptic plasticity of the aging brain. The review will explore and discuss the most recent molecular, structural/functional, and behavioral evidence that supports the use of non-pharmacological approaches as well as cognitive-enhancing drugs to counteract brain aging and early-stage dementia.


Asunto(s)
Demencia/prevención & control , Demencia/psicología , Progresión de la Enfermedad , Nootrópicos/administración & dosificación , Conducta de Reducción del Riesgo , Envejecimiento/efectos de los fármacos , Envejecimiento/fisiología , Encéfalo/efectos de los fármacos , Encéfalo/fisiología , Reserva Cognitiva/efectos de los fármacos , Reserva Cognitiva/fisiología , Terapia Combinada/métodos , Demencia/metabolismo , Humanos , Red Nerviosa/efectos de los fármacos , Red Nerviosa/fisiología
14.
Mov Disord ; 35(12): 2184-2192, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32744357

RESUMEN

BACKGROUND: The dysfunctional activity of the medial prefrontal cortex has been associated with the appearance of the somatic symptom disorder, a key feature of the Parkinson's disease (PD) psychosis complex. OBJECTIVES: The objectives of this study were to investigate whether the basal contents of inhibitory γ-aminobutyric acid and excitatory glutamate plus glutamine neurotransmitter levels are changed in the medial prefrontal cortex of patients with PD with somatic symptom disorder and whether this alteration represents a marker of susceptibility of PD to somatic symptom disorder, thus representing a signature of psychosis complex of PD. METHODS: Levels of the γ-aminobutyric acid and glutamate plus glutamine were investigated, at rest, with proton magnetic resonance spectroscopy. Total creatine was used as an internal reference. The study cohort included 23 patients with somatic symptom disorder plus PD, 19 patients with PD without somatic symptom disorder, 19 healthy control subjects, and 14 individuals with somatic symptom disorder who did not show other psychiatric or neurological disorders. RESULTS: We found that, compared with patients with PD without somatic symptom disorder or healthy control individuals, patients with somatic symptom disorder, with or without PD, show increased γ-aminobutyric acid/total creatine levels in the medial prefrontal cortex. The medial prefrontal cortex contents of glutamate plus glutamine/total creatine levels or γ-aminobutyric acid/glutamate plus glutamine were not different among groups. CONCLUSIONS: Our findings highlight a crucial pathophysiologic role played by high γ-aminobutyric acid within the medial prefrontal cortex in the production of somatic symptom disorder. This phenomenon represents a signature of psychosis complex in patients with PD. © 2020 International Parkinson and Movement Disorder Society.


Asunto(s)
Síntomas sin Explicación Médica , Enfermedad de Parkinson , Ácido Glutámico , Glutamina , Humanos , Enfermedad de Parkinson/complicaciones , Corteza Prefrontal/diagnóstico por imagen , Ácido gamma-Aminobutírico
15.
Neuroimage Clin ; 23: 101932, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31491814

RESUMEN

BACKGROUND: Somatic Symptoms Disorder (SSD) has been shown to have a clinically very high prevalence in Parkinson's Disease (PD) with frequencies ranging from 7.0% to 66.7%, higher than in the general population (10%- 25%). SSD has been associated with dysfunction in Default Mode and Salience network. AIM: With the present study we aim to verify by means of resting state functional MRI whether possible specific abnormalities in the activation and functional connectivity of the default mode network (DMN) and salience network in cognitively intact PD patients may be more prominent in PD patients with somatic symptoms (SSD-PD) as compared with patients without SSD (PD). METHODS: Eighteen SSD-PD patients (61% male), 18 PD patients (83% male) and 22 healthy age-matched subjects (59% male) were enrolled in the study and underwent resting state functional MRI. RESULTS: fractional amplitude of low-frequency fluctuation (fALFF) showed reduced activity in bilateral lateral parietal cortex and in left anterior insula in both SSD-PD and PD compared to control group. Functional connectivity (FC) values in the DMN areas and between DMN and salience network areas were found to be lower in SSD-PD than in control group and PD. No significant correlation was found between fMRI results and demographic and clinical variables, excluding the effect of possible confounders on fMRI results. The present study, showing reduced activity in bilateral parietal areas and in the left anterior insula as compared to healthy controls, suggests a dysfunction of the DMN and salience network in PD, either with or without SSD. The FC reduction within DMN areas and between DMN and salience network areas in SSD-PD patients suggests a role of dysfunctional connectivity in the resting state network of patients with SSD.


Asunto(s)
Corteza Cerebral/fisiopatología , Síntomas sin Explicación Médica , Red Nerviosa/fisiopatología , Enfermedad de Parkinson/fisiopatología , Anciano , Corteza Cerebral/diagnóstico por imagen , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Red Nerviosa/diagnóstico por imagen , Enfermedad de Parkinson/diagnóstico por imagen
16.
Mov Disord ; 34(8): 1100-1111, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31307115

RESUMEN

Hallucinations, delusions, and functional neurological manifestations (conversion and somatic symptom disorders) of Parkinson's disease (PD) and dementia with Lewy bodies increase in frequency with disease progression, predict the onset of cognitive decline, and eventually blend with and are concealed by dementia. These symptoms share the absence of reality constraints and can be considered comparable elements of the PD-dementia with Lewy bodies psychosis. We propose that PD-dementia with Lewy bodies psychotic disorders depend on thalamic dysfunction promoting a theta burst mode and subsequent thalamocortical dysrhythmia with focal cortical coherence to theta electroencephalogram rhythms. This theta electroencephalogram activity, also called fast-theta or pre-alpha, has been shown to predict cognitive decline and fluctuations in Parkinson's disease with dementia and dementia with Lewy bodies. These electroencephalogram alterations are now considered a predictive marker for progression to dementia. The resulting thalamocortical dysrhythmia inhibits the frontal attentional network and favors the decoupling of the default mode network. As the default mode network is involved in integration of self-referential information into conscious perception, unconstrained default mode network activity, as revealed by recent imaging studies, leads to random formation of connections that link strong autobiographical correlates to trivial stimuli, thereby producing hallucinations, delusions, and functional neurological disorders. The thalamocortical dysrhythmia default mode network decoupling hypothesis provides the rationale for the design and testing of novel therapeutic pharmacological and nonpharmacological interventions in the context of PD, PD with dementia, and dementia with Lewy bodies. © 2019 International Parkinson and Movement Disorder Society.


Asunto(s)
Corteza Cerebral/fisiopatología , Deluciones/fisiopatología , Alucinaciones/fisiopatología , Enfermedad por Cuerpos de Lewy/fisiopatología , Enfermedad de Parkinson/fisiopatología , Trastornos Somatomorfos/fisiopatología , Tálamo/fisiopatología , Ritmo Teta/fisiología , Atención/fisiología , Deluciones/psicología , Electroencefalografía , Alucinaciones/psicología , Humanos , Enfermedad por Cuerpos de Lewy/psicología , Vías Nerviosas , Enfermedad de Parkinson/psicología , Trastornos Psicóticos/fisiopatología , Trastornos Psicóticos/psicología , Trastornos Somatomorfos/psicología
17.
Neurobiol Aging ; 74: 21-37, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30408719

RESUMEN

The entorhinal-hippocampal circuit is a strategic hub for cognition and the first site affected by Alzheimer's disease (AD). We investigated magnetic resonance imaging patterns of brain atrophy and functional connectivity in an Alzheimer's Disease Neuroimaging Initiative data set that included healthy controls, mild cognitive impairment (MCI), and patients with AD. Individuals with MCI were clinically evaluated 24 months after the first magnetic resonance imaging scan, and the cohort subdivided into sets of individuals who either did or did not convert to AD. The MCI group was also divided into patients who did show or not the presence of AD-related alterations in the cerebrospinal fluid. Patients with AD exhibited the collapse of the long-range hippocampal/entorhinal connectivity, pronounced cortical/subcortical atrophy, and a dramatic decline in cognitive performances. Patients with MCI who converted to AD or patients with MCI who showed the presence of AD-related alterations in the cerebrospinal fluid showed memory deficits, entorhinal/hippocampal hypoconnectivity, and concomitant atrophy of the two regions. Patients with MCI who did not convert to AD or patients with MCI who did not show the presence of AD-related alterations in the cerebrospinal fluid had no atrophy but showed hippocampal/entorhinal hyperconnectivity with selected neocortical/subcortical regions involved in memory processing and brain metastability. This hyperconnectivity may represent a compensatory strategy against the progression of cognitive impairment.


Asunto(s)
Cognición , Disfunción Cognitiva/fisiopatología , Disfunción Cognitiva/psicología , Anciano , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/fisiopatología , Enfermedad de Alzheimer/psicología , Atrofia , Líquido Cefalorraquídeo , Disfunción Cognitiva/patología , Estudios de Cohortes , Progresión de la Enfermedad , Corteza Entorrinal/patología , Corteza Entorrinal/fisiopatología , Femenino , Hipocampo/patología , Hipocampo/fisiopatología , Humanos , Imagen por Resonancia Magnética , Masculino , Memoria , Persona de Mediana Edad , Neuroimagen
18.
Sci Rep ; 8(1): 9768, 2018 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-29950603

RESUMEN

Zinc (Zn2+) is a pleiotropic modulator of the neuronal and brain activity. The disruption of intraneuronal Zn2+ levels triggers neurotoxic processes and affects neuronal functioning. In this study, we investigated how the pharmacological modulation of brain Zn2+ affects synaptic plasticity and cognition in wild-type mice. To manipulate brain Zn2+ levels, we employed the Zn2+ (and copper) chelator 5-chloro-7-iodo-8-hydroxyquinoline (clioquinol, CQ). CQ was administered for two weeks to 2.5-month-old (m.o.) mice, and effects studied on BDNF-related signaling, metalloproteinase activity as well as learning and memory performances. CQ treatment was found to negatively affect short- and long-term memory performances. The CQ-driven perturbation of brain Zn2+ was found to reduce levels of BDNF, synaptic plasticity-related proteins and dendritic spine density in vivo. Our study highlights the importance of choosing "when", "where", and "how much" in the modulation of brain Zn2+ levels. Our findings confirm the importance of targeting Zn2+ as a therapeutic approach against neurodegenerative conditions but, at the same time, underscore the potential drawbacks of reducing brain Zn2+ availability upon the early stages of development.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Encéfalo/metabolismo , Cognición/fisiología , Zinc/metabolismo , Animales , Encéfalo/efectos de los fármacos , Clioquinol/farmacología , Cognición/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Plasticidad Neuronal/efectos de los fármacos , Plasticidad Neuronal/fisiología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología
20.
Neuropsychiatr Dis Treat ; 13: 1313-1330, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28553118

RESUMEN

Psychosis in Parkinson's disease (PD) is currently considered as the occurrence of hallucinations and delusions. The historical meaning of the term psychosis was, however, broader, encompassing a disorganization of both consciousness and personality, including behavior abnormalities, such as impulsive overactivity and catatonia, in complete definitions by the International Classification of Diseases-10 (ICD-10) and the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5). Our review is aimed at reminding that complex psychotic symptoms, including impulsive overactivity and somatoform disorders (the last being a recent controversial entity in PD), were carefully described in postencephalitic parkinsonism (PEP), many decades before dopaminergic treatment era, and are now described in other parkinsonisms than PD. Eminent neuropsychiatrists of the past century speculated that studying psychosis in PEP might highlight its mechanisms in other conditions. Yet, functional assessments were unavailable at the time. Therefore, the second part of our article reviews the studies of neural correlates of psychosis in parkinsonisms, by taking into account both theories on the narrative functions of the default mode network (DMN) and hypotheses on DMN modulation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...