Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Br J Pharmacol ; 180 Suppl 2: S145-S222, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-38123150

RESUMEN

The Concise Guide to PHARMACOLOGY 2023/24 is the sixth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of approximately 1800 drug targets, and over 6000 interactions with about 3900 ligands. There is an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (https://www.guidetopharmacology.org/), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes almost 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.16178. Ion channels are one of the six major pharmacological targets into which the Guide is divided, with the others being: G protein-coupled receptors, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2023, and supersedes data presented in the 2021/22, 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.


Asunto(s)
Bases de Datos Farmacéuticas , Farmacología , Humanos , Canales Iónicos/química , Ligandos , Receptores Acoplados a Proteínas G , Bases de Datos Factuales
2.
bioRxiv ; 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38106161

RESUMEN

Autosomal dominant polycystic kidney disease (ADPKD) is the leading monogenic cause of kidney failure and affects millions of people worldwide. Despite the prevalence of this monogenic disorder, our limited mechanistic understanding of ADPKD has hindered therapeutic development. Here, we successfully developed bioassays that functionally classify missense variants in polycystin-1 (PC1). Strikingly, ADPKD pathogenic missense variants cluster into two major categories: 1) those that disrupt polycystin cell surface localization or 2) those that attenuate polycystin ion channel activity. We found that polycystin channels with defective surface localization could be rescued with a small molecule. We propose that small-molecule-based strategies to improve polycystin cell surface localization and channel function will be effective therapies for ADPKD patients.

3.
Elife ; 122023 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-36637158

RESUMEN

Eukaryotic cilia and flagella are microtubule-based organelles whose relatively simple shape makes them ideal for investigating the fundamental question of organelle size regulation. Most of the flagellar materials are transported from the cell body via an active transport process called intraflagellar transport (IFT). The rate of IFT entry into flagella, known as IFT injection, has been shown to negatively correlate with flagellar length. However, it remains unknown how the cell measures the length of its flagella and controls IFT injection. One of the most-discussed theoretical models for length sensing to control IFT is the ion-current model, which posits that there is a uniform distribution of Ca2+ channels along the flagellum and that the Ca2+ current from the flagellum into the cell body increases linearly with flagellar length. In this model, the cell uses the Ca2+ current to negatively regulate IFT injection. The recent discovery that IFT entry into flagella is regulated by the phosphorylation of kinesin through a calcium-dependent protein kinase has provided further impetus for the ion-current model. To test this model, we measured and manipulated the levels of Ca2+ inside of Chlamydomonas flagella and quantified IFT injection. Although the concentration of Ca2+ inside of flagella was weakly correlated with the length of flagella, we found that IFT injection was reduced in calcium-deficient flagella, rather than increased as the model predicted, and that variation in IFT injection was uncorrelated with the occurrence of flagellar Ca2+ spikes. Thus, Ca2+ does not appear to function as a negative regulator of IFT injection, hence it cannot form the basis of a stable length control system.


Asunto(s)
Chlamydomonas reinhardtii , Chlamydomonas , Chlamydomonas reinhardtii/metabolismo , Transporte Biológico , Flagelos/fisiología , Cilios/metabolismo , Chlamydomonas/metabolismo
4.
Curr Biol ; 32(18): 4071-4078.e4, 2022 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-35926510

RESUMEN

Cilia or eukaryotic flagella are microtubule-based organelles found across the eukaryotic tree of life. Their very high aspect ratio and crowded interior are unfavorable to diffusive transport of most components required for their assembly and maintenance. Instead, a system of intraflagellar transport (IFT) trains moves cargo rapidly up and down the cilium (Figure 1A).1-3 Anterograde IFT, from the cell body to the ciliary tip, is driven by kinesin-II motors, whereas retrograde IFT is powered by cytoplasmic dynein-1b motors.4 Both motors are associated with long chains of IFT protein complexes, known as IFT trains, and their cargoes.5-8 The conversion from anterograde to retrograde motility at the ciliary tip involves (1) the dissociation of kinesin motors from trains,9 (2) a fundamental restructuring of the train from the anterograde to the retrograde architecture,8,10,11 (3) the unloading and reloading of cargo,2 and (4) the activation of the dynein motors.8,12 A prominent hypothesis is that there is dedicated calcium-dependent protein-based machinery at the ciliary tip to mediate these processes.4,13 However, the mechanisms of IFT turnaround have remained elusive. In this study, we use mechanical and chemical methods to block IFT at intermediate positions along the cilia of the green algae Chlamydomonas reinhardtii, in normal and calcium-depleted conditions. We show that IFT turnaround, kinesin dissociation, and dynein-1b activation can consistently be induced at arbitrary distances from the ciliary tip, with no stationary tip machinery being required. Instead, we demonstrate that the anterograde-to-retrograde conversion is a calcium-independent intrinsic ability of IFT.


Asunto(s)
Dineínas , Cinesinas , Transporte Biológico , Calcio/metabolismo , Cilios/metabolismo , Dineínas Citoplasmáticas/metabolismo , Dineínas/metabolismo , Flagelos/fisiología
5.
Bio Protoc ; 11(20): e4196, 2021 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-34761068

RESUMEN

PC-1 and PC-2 form an ion channel complex called the polycystin complex, which predominantly localizes to a small hair-like organelle called the primary cilium. The polycystin complex permeates cations, K+, Na+, and Ca2+, and has an unusual 1:3 stoichiometry that combines one PC-1 subunit with three PC-2 subunits. However, the small size and shape of primary cilia impose technical challenges to study the polycystin complex in its native environment. In this paper, we describe the methodology to directly record ion channel activity in primary cilia. This method will allow a detailed functional characterization of how mutations within the polycystin complex cause Autosomal Dominant Polycystic Kidney Disease (ADPKD), essential to develop novel therapeutics for this ciliopathy.

6.
Br J Pharmacol ; 178 Suppl 1: S157-S245, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34529831

RESUMEN

The Concise Guide to PHARMACOLOGY 2021/22 is the fifth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of nearly 1900 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes over 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/bph.15539. Ion channels are one of the six major pharmacological targets into which the Guide is divided, with the others being: G protein-coupled receptors, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2021, and supersedes data presented in the 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.


Asunto(s)
Bases de Datos Farmacéuticas , Farmacología , Humanos , Canales Iónicos , Bases del Conocimiento , Ligandos , Receptores Acoplados a Proteínas G
7.
Elife ; 92020 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-33164752

RESUMEN

Mutations in the polycystin proteins, PC-1 and PC-2, result in autosomal dominant polycystic kidney disease (ADPKD) and ultimately renal failure. PC-1 and PC-2 enrich on primary cilia, where they are thought to form a heteromeric ion channel complex. However, a functional understanding of the putative PC-1/PC-2 polycystin complex is lacking due to technical hurdles in reliably measuring its activity. Here we successfully reconstitute the PC-1/PC-2 complex in the plasma membrane of mammalian cells and show that it functions as an outwardly rectifying channel. Using both reconstituted and ciliary polycystin channels, we further show that a soluble fragment generated from the N-terminal extracellular domain of PC-1 functions as an intrinsic agonist that is necessary and sufficient for channel activation. We thus propose that autoproteolytic cleavage of the N-terminus of PC-1, a hotspot for ADPKD mutations, produces a soluble ligand in vivo. These findings establish a mechanistic framework for understanding the role of PC-1/PC-2 heteromers in ADPKD and suggest new therapeutic strategies that would expand upon the limited symptomatic treatments currently available for this progressive, terminal disease.


On the surface of most animal and other eukaryotic cells are small rod-like protrusions known as primary cilia. Each cilium is encased by a specialized membrane which is enriched in protein complexes that help the cell sense its local environment. Some of these complexes help transport ions in out of the cell, while others act as receptors that receive chemical signals called ligands. A unique ion channel known as the polycystin complex is able to perform both of these roles as it contains a receptor called PC-1 in addition to an ion channel called PC-2. Various mutations in the genes that code for PC-1 and PC-2 can result in autosomal dominant polycystic kidney disease (ADPKD), which is the most common monogenetic disease in humans. However, due to the small size of primary cilia ­ which are less than a thousandth of a millimeter thick ­ little is known about how polycystin complexes are regulated and how mutations lead to ADPKD. To overcome this barrier, Ha et al. modified kidney cells grown in the lab so that PC-1 and PC-2 form a working channel in the plasma membrane which surrounds the entire cell. As the body of a cell is around 10,000 times bigger than the cilium, this allowed the movement of ions across the polycystin complex to be studied using conventional techniques. Experiments using this newly developed assay revealed that a region at one of the ends of the PC-1 protein, named the C-type lectin domain, is essential for stimulating polycystin complexes. Ha et al. found that this domain of PC-1 is able to cut itself from the protein complex. Further experiments showed that when fragments of PC-1, which contain the C-type lectin domain, are no longer bound to the membrane, they can activate the polycystin channels in cilia as well as the plasma membrane. This suggests that this region of PC-1 may also act as a secreted ligand that can activate other polycystin channels. Some of the genetic mutations that cause ADPKD likely disrupt the activity of the polycystin complex and reduce its ability to transport ions across the cilia membrane. Therefore, the cell assay created in this study could be used to screen for small molecules that can restore the activity of these ion channels in patients with ADPKD.


Asunto(s)
Membrana Celular/metabolismo , Cilios/metabolismo , Riñón Poliquístico Autosómico Dominante/metabolismo , Canales Catiónicos TRPP/metabolismo , Animales , Señalización del Calcio , Membrana Celular/química , Membrana Celular/genética , Cilios/química , Cilios/genética , Células HEK293 , Humanos , Potenciales de la Membrana , Ratones , Modelos Moleculares , Complejos Multiproteicos , Mutación , Riñón Poliquístico Autosómico Dominante/genética , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Relación Estructura-Actividad , Canales Catiónicos TRPP/química , Canales Catiónicos TRPP/genética
8.
J Physiol ; 598(9): 1741-1752, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31106399

RESUMEN

The left-right organizer (LRO) in the mouse consists of pit cells within the depression, located at the end of the developing notochord, also known as the embryonic node and crown cells lining the outer periphery of the node. Cilia on pit cells are posteriorly tilted, rotate clockwise and generate leftward fluid flow. Primary cilia on crown cells are required to interpret the directionality of fluid movement and initiate flow-dependent gene transcription. Crown cells express PC1-L1 and PC2, which may form a heteromeric polycystin channel complex on primary cilia. It is still only poorly understood how fluid flow activates the ciliary polycystin complex. Besides polycystin channels voltage gated channels like HCN4 and KCNQ1 have been implicated in establishing asymmetry. How this electrical network of ion channels initiates left-sided signalling cascades and differential gene expression is currently only poorly defined.


Asunto(s)
Tipificación del Cuerpo , Cilios , Animales , Ratones , Transducción de Señal , Canales Catiónicos TRPP/metabolismo
9.
Elife ; 72018 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-29897330

RESUMEN

Cell division is essential to expand, shape, and replenish epithelia. In the adult small intestine, cells from a common progenitor intermix with other lineages, whereas cell progeny in many other epithelia form contiguous patches. The mechanisms that generate these distinct patterns of progeny are poorly understood. Using light sheet and confocal imaging of intestinal organoids, we show that lineages intersperse during cytokinesis, when elongated interphase cells insert between apically displaced daughters. Reducing the cellular aspect ratio to minimize the height difference between interphase and mitotic cells disrupts interspersion, producing contiguous patches. Cellular aspect ratio is similarly a key parameter for division-coupled interspersion in the early mouse embryo, suggesting that this physical mechanism for patterning progeny may pertain to many mammalian epithelia. Our results reveal that the process of cytokinesis in elongated mammalian epithelia allows lineages to intermix and that cellular aspect ratio is a critical modulator of the progeny pattern.


Asunto(s)
Linaje de la Célula/fisiología , Citocinesis/fisiología , Células Epiteliales/fisiología , Epitelio/fisiología , Animales , Tipificación del Cuerpo/fisiología , División Celular/fisiología , Embrión de Mamíferos/citología , Embrión de Mamíferos/embriología , Células Epiteliales/citología , Células Epiteliales/metabolismo , Epitelio/embriología , Femenino , Masculino , Mamíferos/embriología , Mamíferos/fisiología , Ratones Endogámicos C57BL , Ratones Transgénicos , Microscopía Confocal , Imagen de Lapso de Tiempo/métodos
10.
Nat Commun ; 7: 12109, 2016 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-27357649

RESUMEN

Cellular stresses trigger autophagy to remove damaged macromolecules and organelles. Lysosomes 'host' multiple stress-sensing mechanisms that trigger the coordinated biogenesis of autophagosomes and lysosomes. For example, transcription factor (TF)EB, which regulates autophagy and lysosome biogenesis, is activated following the inhibition of mTOR, a lysosome-localized nutrient sensor. Here we show that reactive oxygen species (ROS) activate TFEB via a lysosomal Ca(2+)-dependent mechanism independent of mTOR. Exogenous oxidants or increasing mitochondrial ROS levels directly and specifically activate lysosomal TRPML1 channels, inducing lysosomal Ca(2+) release. This activation triggers calcineurin-dependent TFEB-nuclear translocation, autophagy induction and lysosome biogenesis. When TRPML1 is genetically inactivated or pharmacologically inhibited, clearance of damaged mitochondria and removal of excess ROS are blocked. Furthermore, TRPML1's ROS sensitivity is specifically required for lysosome adaptation to mitochondrial damage. Hence, TRPML1 is a ROS sensor localized on the lysosomal membrane that orchestrates an autophagy-dependent negative-feedback programme to mitigate oxidative stress in the cell.


Asunto(s)
Autofagia , Lisosomas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Canales de Potencial de Receptor Transitorio/metabolismo , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Células COS , Calcio/metabolismo , Chlorocebus aethiops , Células HEK293 , Células HeLa , Humanos , Ratones , Proteínas Asociadas a Microtúbulos/metabolismo , Mitocondrias/metabolismo , Biogénesis de Organelos , Técnicas de Placa-Clamp
11.
Elife ; 42015 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-26650848

RESUMEN

The beating of motile cilia generates fluid flow over epithelia in brain ventricles, airways, and Fallopian tubes. Here, we patch clamp single motile cilia of mammalian ependymal cells and examine their potential function as a calcium signaling compartment. Resting motile cilia calcium concentration ([Ca2+] ~170 nM) is only slightly elevated over cytoplasmic [Ca2+] (~100 nM) at steady state. Ca2+ changes that arise in the cytoplasm rapidly equilibrate in motile cilia. We measured CaV1 voltage-gated calcium channels in ependymal cells, but these channels are not specifically enriched in motile cilia. Membrane depolarization increases ciliary [Ca2+], but only marginally alters cilia beating and cilia-driven fluid velocity within short (~1 min) time frames. We conclude that beating of ependymal motile cilia is not tightly regulated by voltage-gated calcium channels, unlike that of well-studied motile cilia and flagella in protists, such as Paramecia and Chlamydomonas.

12.
Nature ; 504(7479): 311-4, 2013 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-24336288

RESUMEN

Primary cilia are solitary, non-motile extensions of the centriole found on nearly all nucleated eukaryotic cells between cell divisions. Only ∼200-300 nm in diameter and a few micrometres long, they are separated from the cytoplasm by the ciliary neck and basal body. Often called sensory cilia, they are thought to receive chemical and mechanical stimuli and initiate specific cellular signal transduction pathways. When activated by a ligand, hedgehog pathway proteins, such as GLI2 and smoothened (SMO), translocate from the cell into the cilium. Mutations in primary ciliary proteins are associated with severe developmental defects. The ionic conditions, permeability of the primary cilia membrane, and effectiveness of the diffusion barriers between the cilia and cell body are unknown. Here we show that cilia are a unique calcium compartment regulated by a heteromeric TRP channel, PKD1L1-PKD2L1, in mice and humans. In contrast to the hypothesis that polycystin (PKD) channels initiate changes in ciliary calcium that are conducted into the cytoplasm, we show that changes in ciliary calcium concentration occur without substantially altering global cytoplasmic calcium. PKD1L1-PKD2L1 acts as a ciliary calcium channel controlling ciliary calcium concentration and thereby modifying SMO-activated GLI2 translocation and GLI1 expression.


Asunto(s)
Canales de Calcio/metabolismo , Señalización del Calcio , Cilios/metabolismo , Proteínas Hedgehog/metabolismo , Orgánulos/metabolismo , Animales , Calcio/metabolismo , Canales de Calcio/química , Células Cultivadas , Citoplasma/metabolismo , Femenino , Proteínas Hedgehog/deficiencia , Proteínas Hedgehog/genética , Humanos , Factores de Transcripción de Tipo Kruppel/metabolismo , Masculino , Proteínas de la Membrana/química , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/metabolismo , Ratones , Proteínas Nucleares/metabolismo , Receptores de Superficie Celular/química , Receptores de Superficie Celular/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptor Smoothened , Proteína con Dedos de Zinc GLI1 , Proteína Gli2 con Dedos de Zinc
13.
Nature ; 504(7479): 315-8, 2013 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-24336289

RESUMEN

A primary cilium is a solitary, slender, non-motile protuberance of structured microtubules (9+0) enclosed by plasma membrane. Housing components of the cell division apparatus between cell divisions, primary cilia also serve as specialized compartments for calcium signalling and hedgehog signalling pathways. Specialized sensory cilia such as retinal photoreceptors and olfactory cilia use diverse ion channels. An ion current has been measured from primary cilia of kidney cells, but the responsible genes have not been identified. The polycystin proteins (PC and PKD), identified in linkage studies of polycystic kidney disease, are candidate channels divided into two structural classes: 11-transmembrane proteins (PKD1, PKD1L1 and PKD1L2) remarkable for a large extracellular amino terminus of putative cell adhesion domains and a G-protein-coupled receptor proteolytic site, and the 6-transmembrane channel proteins (PKD2, PKD2L1 and PKD2L2; TRPPs). Evidence indicates that the PKD1 proteins associate with the PKD2 proteins via coiled-coil domains. Here we use a transgenic mouse in which only cilia express a fluorophore and use it to record directly from primary cilia, and demonstrate that PKD1L1 and PKD2L1 form ion channels at high densities in several cell types. In conjunction with an accompanying manuscript, we show that the PKD1L1-PKD2L1 heteromeric channel establishes the cilia as a unique calcium compartment within cells that modulates established hedgehog pathways.


Asunto(s)
Canales de Calcio/metabolismo , Cilios/metabolismo , Animales , Canales de Calcio/deficiencia , Canales de Calcio/genética , División Celular , Línea Celular , Membrana Celular/metabolismo , Células Cultivadas , Células HEK293 , Proteínas Hedgehog/metabolismo , Humanos , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Transgénicos , Proteínas Oncogénicas/metabolismo , Receptores de Superficie Celular/deficiencia , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptor Smoothened , Transactivadores/metabolismo , Proteína con Dedos de Zinc GLI1
14.
Proc Natl Acad Sci U S A ; 110(16): 6364-9, 2013 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-23542377

RESUMEN

The crystal structure of the open conformation of a bacterial voltage-gated sodium channel pore from Magnetococcus sp. (NaVMs) has provided the basis for a molecular dynamics study defining the channel's full ion translocation pathway and conductance process, selectivity, electrophysiological characteristics, and ion-binding sites. Microsecond molecular dynamics simulations permitted a complete time-course characterization of the protein in a membrane system, capturing the plethora of conductance events and revealing a complex mixture of single and multi-ion phenomena with decoupled rapid bidirectional water transport. The simulations suggest specific localization sites for the sodium ions, which correspond with experimentally determined electron density found in the selectivity filter of the crystal structure. These studies have also allowed us to identify the ion conductance mechanism and its relation to water movement for the NavMs channel pore and to make realistic predictions of its conductance properties. The calculated single-channel conductance and selectivity ratio correspond closely with the electrophysiology measurements of the NavMs channel expressed in HEK 293 cells. The ion translocation process seen in this voltage-gated sodium channel is clearly different from that exhibited by members of the closely related family of voltage-gated potassium channels and also differs considerably from existing proposals for the conductance process in sodium channels. These studies simulate sodium channel conductance based on an experimentally determined structure of a sodium channel pore that has a completely open transmembrane pathway and activation gate.


Asunto(s)
Alphaproteobacteria/metabolismo , Transporte Iónico/fisiología , Modelos Moleculares , Simulación de Dinámica Molecular , Canales de Sodio Activados por Voltaje/química , Canales de Sodio Activados por Voltaje/metabolismo , Células HEK293 , Humanos , Hierro/metabolismo , Agua/metabolismo
15.
Dev Cell ; 22(6): 1149-62, 2012 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-22698280

RESUMEN

Transient receptor potential melastatin-like 7 (TRPM7) is a channel protein that also contains a regulatory serine-threonine kinase domain. Here, we find that Trpm7-/- T cells are deficient in Fas-receptor-induced apoptosis and that TRPM7 channel activity participates in the apoptotic process and is regulated by caspase-dependent cleavage. This function of TRPM7 is dependent on its function as a channel, but not as a kinase. TRPM7 is cleaved by caspases at D1510, disassociating the carboxy-terminal kinase domain from the pore without disrupting the phosphotransferase activity of the released kinase but substantially increasing TRPM7 ion channel activity. Furthermore, we show that TRPM7 regulates endocytic compartmentalization of the Fas receptor after receptor stimulation, an important process for apoptotic signaling through Fas receptors. These findings raise the possibility that other members of the TRP channel superfamily are also regulated by caspase-mediated cleavage, with wide-ranging implications for cell death and differentiation.


Asunto(s)
Apoptosis , Canales Catiónicos TRPM/metabolismo , Receptor fas/metabolismo , Animales , Caspasas/metabolismo , Línea Celular , Endocitosis , Humanos , Canales Iónicos/metabolismo , Ratones , Proteínas Serina-Treonina Quinasas/metabolismo
16.
Proc Natl Acad Sci U S A ; 108(44): 18114-9, 2011 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-22025699

RESUMEN

Detection and adaptation to cold temperature is crucial to survival. Cold sensing in the innocuous range of cold (>10-15 °C) in the mammalian peripheral nervous system is thought to rely primarily on transient receptor potential (TRP) ion channels, most notably the menthol receptor, TRPM8. Here we report that TRP cation channel, subfamily C member 5 (TRPC5), but not TRPC1/TRPC5 heteromeric channels, are highly cold sensitive in the temperature range 37-25 °C. We found that TRPC5 is present in mouse and human sensory neurons of dorsal root ganglia, a substantial number of peripheral nerves including intraepithelial endings, and in the dorsal lamina of the spinal cord that receives sensory input from the skin, consistent with a potential TRPC5 function as an innocuous cold transducer in nociceptive and thermosensory nerve endings. Although deletion of TRPC5 in 129S1/SvImJ mice resulted in no temperature-sensitive behavioral changes, TRPM8 and/or other menthol-sensitive channels appear to underpin a much larger component of noxious cold sensing after TRPC5 deletion and a shift in mechanosensitive C-fiber subtypes. These findings demonstrate that highly cold-sensitive TRPC5 channels are a molecular component for detection and regional adaptation to cold temperatures in the peripheral nervous system that is distinct from noxious cold sensing.


Asunto(s)
Regulación de la Temperatura Corporal/fisiología , Frío , Sistema Nervioso Periférico/fisiología , Proteínas de Transporte Vesicular/fisiología , Animales , Ganglios Espinales/citología , Ganglios Espinales/metabolismo , Humanos , Inmunohistoquímica , Ratones , Ratones Noqueados , Neuronas/metabolismo , Técnicas de Placa-Clamp , Sistema Nervioso Periférico/metabolismo , Médula Espinal/metabolismo , Proteínas de Transporte Vesicular/genética
17.
Nat Commun ; 1: 38, 2010 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-20802798

RESUMEN

Membrane fusion and fission events in intracellular trafficking are controlled by both intraluminal Ca(2+) release and phosphoinositide (PIP) signalling. However, the molecular identities of the Ca(2+) release channels and the target proteins of PIPs are elusive. In this paper, by direct patch-clamping of the endolysosomal membrane, we report that PI(3,5)P(2), an endolysosome-specific PIP, binds and activates endolysosome-localized mucolipin transient receptor potential (TRPML) channels with specificity and potency. Both PI(3,5)P(2)-deficient cells and cells that lack TRPML1 exhibited enlarged endolysosomes/vacuoles and trafficking defects in the late endocytic pathway. We find that the enlarged vacuole phenotype observed in PI(3,5)P(2)-deficient mouse fibroblasts is suppressed by overexpression of TRPML1. Notably, this PI(3,5)P(2)-dependent regulation of TRPML1 is evolutionarily conserved. In budding yeast, hyperosmotic stress induces Ca(2+) release from the vacuole. In this study, we show that this release requires both PI(3,5)P(2) production and a yeast functional TRPML homologue. We propose that TRPMLs regulate membrane trafficking by transducing information regarding PI(3,5)P(2) levels into changes in juxtaorganellar Ca(2+), thereby triggering membrane fusion/fission events.


Asunto(s)
Membrana Celular/metabolismo , Lisosomas/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Canales Catiónicos TRPM/metabolismo , Animales , Transporte Biológico , Electrofisiología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana , Ratones , Unión Proteica , Canales de Potencial de Receptor Transitorio
18.
J Biol Chem ; 284(46): 32040-52, 2009 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-19638346

RESUMEN

The mucolipin TRP (TRPML) proteins are a family of endolysosomal cation channels with genetically established importance in humans and rodent. Mutations of human TRPML1 cause type IV mucolipidosis, a devastating pediatric neurodegenerative disease. Our recent electrophysiological studies revealed that, although a TRPML1-mediated current can only be recorded in late endosome and lysosome (LEL) using the lysosome patch clamp technique, a proline substitution in TRPML1 (TRPML1(V432P)) results in a large whole cell current. Thus, it remains unknown whether the large TRPML1(V432P)-mediated current results from an increased surface expression (trafficking), elevated channel activity (gating), or both. Here we performed systemic Pro substitutions in a region previously implicated in the gating of various 6 transmembrane cation channels. We found that several Pro substitutions displayed gain-of-function (GOF) constitutive activities at both the plasma membrane (PM) and endolysosomal membranes. Although wild-type TRPML1 and non-GOF Pro substitutions localized exclusively in LEL and were barely detectable in the PM, the GOF mutations with high constitutive activities were not restricted to LEL compartments, and most significantly, exhibited significant surface expression. Because lysosomal exocytosis is Ca(2+)-dependent, constitutive Ca(2+) permeability due to Pro substitutions may have resulted in stimulus-independent intralysosomal Ca(2+) release, hence the surface expression and whole cell current of TRPML1. Indeed, surface staining of lysosome-associated membrane protein-1 (Lamp-1) was dramatically increased in cells expressing GOF TRPML1 channels. We conclude that TRPML1 is an inwardly rectifying, proton-impermeable, Ca(2+) and Fe(2+)/Mn(2+) dually permeable cation channel that may be gated by unidentified cellular mechanisms through a conformational change in the cytoplasmic face of the transmembrane 5 (TM5). Furthermore, activation of TRPML1 in LEL may lead to the appearance of TRPML1 proteins at the PM.


Asunto(s)
Mutación/genética , Prolina/química , Canales Catiónicos TRPM/genética , Canales Catiónicos TRPM/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Calcio/metabolismo , Células Cultivadas , Electrofisiología , Exocitosis , Humanos , Riñón/citología , Riñón/metabolismo , Lisosomas , Manganeso/metabolismo , Datos de Secuencia Molecular , Mutagénesis , Prolina/genética , Homología de Secuencia de Aminoácido , Canales de Potencial de Receptor Transitorio
19.
Nature ; 455(7215): 992-6, 2008 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-18794901

RESUMEN

TRPML1 (mucolipin 1, also known as MCOLN1) is predicted to be an intracellular late endosomal and lysosomal ion channel protein that belongs to the mucolipin subfamily of transient receptor potential (TRP) proteins. Mutations in the human TRPML1 gene cause mucolipidosis type IV disease (ML4). ML4 patients have motor impairment, mental retardation, retinal degeneration and iron-deficiency anaemia. Because aberrant iron metabolism may cause neural and retinal degeneration, it may be a primary cause of ML4 phenotypes. In most mammalian cells, release of iron from endosomes and lysosomes after iron uptake by endocytosis of Fe(3+)-bound transferrin receptors, or after lysosomal degradation of ferritin-iron complexes and autophagic ingestion of iron-containing macromolecules, is the chief source of cellular iron. The divalent metal transporter protein DMT1 (also known as SLC11A2) is the only endosomal Fe(2+) transporter known at present and it is highly expressed in erythroid precursors. Genetic studies, however, suggest the existence of a DMT1-independent endosomal and lysosomal Fe(2+) transport protein. By measuring radiolabelled iron uptake, by monitoring the levels of cytosolic and intralysosomal iron and by directly patch-clamping the late endosomal and lysosomal membrane, here we show that TRPML1 functions as a Fe(2+) permeable channel in late endosomes and lysosomes. ML4 mutations are shown to impair the ability of TRPML1 to permeate Fe(2+) at varying degrees, which correlate well with the disease severity. A comparison of TRPML1(-/- )ML4 and control human skin fibroblasts showed a reduction in cytosolic Fe(2+) levels, an increase in intralysosomal Fe(2+) levels and an accumulation of lipofuscin-like molecules in TRPML1(-/-) cells. We propose that TRPML1 mediates a mechanism by which Fe(2+) is released from late endosomes and lysosomes. Our results indicate that impaired iron transport may contribute to both haematological and degenerative symptoms of ML4 patients.


Asunto(s)
Endosomas/metabolismo , Hierro/metabolismo , Lisosomas/metabolismo , Mucolipidosis/metabolismo , Canales Catiónicos TRPM/metabolismo , Animales , Línea Celular , Permeabilidad de la Membrana Celular , Fibroblastos , Fluorescencia , Humanos , Transporte Iónico , Hierro/análisis , Ratones , Protones , Canales Catiónicos TRPM/deficiencia , Canales Catiónicos TRPM/genética , Transfección , Canales de Potencial de Receptor Transitorio
20.
J Neurosci ; 28(36): 8897-907, 2008 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-18768683

RESUMEN

During development of the nervous system, short- and long-range signals cooperate to promote axonal growth, guidance, and target innervation. Particularly, a short-range signal transducer, the neural cell adhesion molecule (NCAM), stimulates neurite outgrowth via mechanisms that require posttranslational modification of NCAM and signaling via receptors to a long-range messenger, the fibroblast growth factor (FGF). In the present study we further characterized a mechanism which regulates the functional interplay between NCAM and FGF receptor(s). We show that activation of FGF receptor(s) by FGF2 leads to palmitoylation of the two major transmembrane NCAM isoforms, NCAM140 and NCAM180, translocation of NCAM to GM1 ganglioside-containing lipid rafts, and stimulation of neurite outgrowth of hippocampal neurons. Ablation of NCAM, mutation of NCAM140 or NCAM180 palmitoylation sites, or pharmacological suppression of NCAM signaling inhibited FGF2-stimulated neurite outgrowth. Of the 23 members of the aspartate-histidine-histidine-cysteine (DHHC) domain containing proteins, DHHC-7 most strongly stimulated palmitoylation of NCAM, and enzyme activity was enhanced by FGF2. Thus, our study uncovers a molecular mechanism by which a growth factor regulates neuronal morphogenesis via activation of palmitoylation, which in turn modifies subcellular location and thus signaling via an adhesion molecule.


Asunto(s)
Factores de Crecimiento de Fibroblastos/farmacología , Lipoilación/efectos de los fármacos , Morfogénesis/efectos de los fármacos , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Neuronas/efectos de los fármacos , Animales , Animales Recién Nacidos , Células Cultivadas , Hipocampo/citología , Hidroxilamina/farmacología , Inmunoprecipitación/métodos , Mercaptoetanol/farmacología , Ratones , Ratones Endogámicos C57BL , Mutación/genética , Moléculas de Adhesión de Célula Nerviosa/genética , Neuritas/efectos de los fármacos , Neuritas/fisiología , Neuronas/citología , Unión Proteica , Estructura Terciaria de Proteína , Pirimidinas/farmacología , Ratas , Receptores de Factores de Crecimiento de Fibroblastos/genética , Receptores de Factores de Crecimiento de Fibroblastos/metabolismo , Factores de Tiempo , Transfección/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...