Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PeerJ ; 12: e17259, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38699194

RESUMEN

Iron (Fe) plays a fundamental role in coral symbiosis, supporting photosynthesis, respiration, and many important enzymatic reactions. However, the extent to which corals are limited by Fe and their metabolic responses to inorganic Fe enrichment remains to be understood. We used respirometry, variable chlorophyll fluorescence, and O2 microsensors to investigate the impact of increasing Fe(III) concentrations (20, 50, and 100 nM) on the photosynthetic capacity of two Mediterranean coral species, Cladocora caespitosa and Oculina patagonica. While the bioavailability of inorganic Fe can rapidly decrease, we nevertheless observed significant physiological effects at all Fe concentrations. In C. caespitosa, exposure to 50 nM Fe(III) increased rates of respiration and photosynthesis, while the relative electron transport rate (rETR(II)) decreased at higher Fe(III) exposure (100 nM). In contrast, O. patagonica reduced respiration, photosynthesis rates, and maximum PSII quantum yield (Fv/Fm) across all iron enrichments. Both corals exhibited increased hypoxia (<50 µmol O2 L-1) within their gastric cavity at night when exposed to 50 and 100 nM Fe(III), leading to increased polyp contraction time and reduced O2 exchange with the surrounding water. Our results indicate that C. caespitosa, but not O. patagonica, might be limited in Fe for achieving maximal photosynthetic efficiency. Understanding the multifaceted role of iron in corals' health and their response to environmental change is crucial for effective coral conservation.


Asunto(s)
Antozoos , Hierro , Oxígeno , Fotosíntesis , Antozoos/efectos de los fármacos , Antozoos/metabolismo , Animales , Fotosíntesis/efectos de los fármacos , Hierro/metabolismo , Oxígeno/metabolismo , Mar Mediterráneo , Simbiosis
3.
Mar Pollut Bull ; 186: 114221, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36495608

RESUMEN

The prevalence of microplastics in the marine environment poses potential health risks to humans through seafood consumption. Relevant data are available but the diverse analytical approaches adopted to characterise microplastics have hampered data comparison among studies. Here, the techniques for extraction and identification of microplastics are summarised among studies of marine mussels and fish, two major groups of seafood. Among the reviewed papers published in 2018-2021, the most common practice to extract microplastics was through tissue digestion in alkaline chemicals (46 % for mussels, 56 % for fish) and oxidative chemicals (28 % for mussels, 12 % for fish). High-density solutions such as sodium chloride could be used to isolate microplastics from other undigested residues by flotation. Polymer analysis of microplastics was mainly carried out with Fourier-transform infrared (FTIR) spectroscopy (58 % for both mussels and fish) and Raman spectroscopy (14 % for mussels, 8 % for fish). Among these methods, we recommend alkaline digestion for microplastic extraction, and the automated mapping approach of FTIR or Raman spectroscopy for microplastic identification. Overall, this study highlights the need for a standard protocol for characterising microplastics in seafood samples.


Asunto(s)
Bivalvos , Contaminantes Químicos del Agua , Humanos , Animales , Microplásticos , Plásticos/análisis , Monitoreo del Ambiente/métodos , Contaminantes Químicos del Agua/análisis , Peces , Alimentos Marinos/análisis
4.
Front Physiol ; 12: 656562, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34163371

RESUMEN

Coral reefs are declining worldwide due to global changes in the marine environment. The increasing frequency of massive bleaching events in the tropics is highlighting the need to better understand the stages of coral physiological responses to extreme conditions. Moreover, like many other coastal regions, coral reef ecosystems are facing additional localized anthropogenic stressors such as nutrient loading, increased turbidity, and coastal development. Different strategies have been developed to measure the health status of a damaged reef, ranging from the resolution of individual polyps to the entire coral community, but techniques for measuring coral physiology in situ are not yet widely implemented. For instance, while there are many studies of the coral holobiont response in single or limited-number multiple stressor experiments, they provide only partial insights into metabolic performance under more complex and temporally and spatially variable natural conditions. Here, we discuss the current status of coral reefs and their global and local stressors in the context of experimental techniques that measure core processes in coral metabolism (respiration, photosynthesis, and biocalcification) in situ, and their role in indicating the health status of colonies and communities. We highlight the need to improve the capability of in situ studies in order to better understand the resilience and stress response of corals under multiple global and local scale stressors.

5.
Mar Pollut Bull ; 167: 112289, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33773418

RESUMEN

We surveyed 41 sites to provide an updated baseline of Hong Kong coral communities. Five community types were identified, among them the most common one inhabited oceanic waters and dominated by both massive and upward-plating corals. The 41 sites had 2.1-⁠79% coral cover; among them 21 in the eastern waters had >40% coral cover. Corals in several sites showed signs of external bioerosion or bleaching-induced damage. Sites in the southern waters had low coral cover. Both coral cover and generic richness correlated negatively with several water quality parameters including total inorganic nitrogen concentration and turbidity, indicating the development of Hong Kong's coral communities is constrained by water quality parameters. Management actions are proposed to reduce bioerosion, and to monitor sites affected by bleaching.


Asunto(s)
Antozoos , Animales , Arrecifes de Coral , Hong Kong , Océanos y Mares , Calidad del Agua
6.
J Proteome Res ; 20(3): 1783-1791, 2021 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-33630606

RESUMEN

Stony corals form the foundation of coral reefs, which are of prominent ecological and economic significance. A robust workflow for investigating the coral proteome is essential in understanding coral biology. Here we investigated different preparative workflows and characterized the proteome of Platygyra carnosa, a common stony coral of the South China Sea. We found that a combination of bead homogenization with suspension trapping (S-Trap) preparation could yield more than 2700 proteins from coral samples. Annotation using a P. carnosa transcriptome database revealed that the majority of proteins were from the coral host cells (2140, 212, and 427 proteins from host coral, dinoflagellate, and other compartments, respectively). Label-free quantification and functional annotations indicated that a high proportion were involved in protein and redox homeostasis. Furthermore, the S-Trap method achieved good reproducibility in quantitative analysis. Although yielding a low symbiont:host ratio, the method is efficient in characterizing the coral host proteomic landscape, which provides a foundation to explore the molecular basis of the responses of coral host tissues to environmental stressors.


Asunto(s)
Antozoos , Animales , Antozoos/genética , China , Proteoma/genética , Proteómica , Reproducibilidad de los Resultados , Simbiosis
7.
Mar Pollut Bull ; 153: 111005, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32275553

RESUMEN

Stress-tolerant coral species, such as Platygyra spp., are considered to be well adapted to survive in marginal reefs, but their physiological response to short term exposure to abnormally high temperature and lowered salinity remains poorly understood. Using non-invasive techniques to quantitatively assess the health of Platygyra carnosa (e.g. respiration, photosynthesis, biocalcification and whiteness), we identified the plasticity of its energetics and physiological limits. Although these indicators suggest that it can survive to increasing temperature (25-32 °C), its overall energetics were seriously diminished at temperatures >30 °C. In contrast, it was well adapted to hyposaline waters (31-21 psu) but with reduced biocalcification, indicating short term adaptation for expected future changes in salinity driven by increased amounts and intensities of precipitation. Our findings provide useful insights to the effect of these climate drivers on P. carnosa metabolism and thus better forecast changes in their health status under future climate change scenarios.


Asunto(s)
Antozoos/fisiología , Tolerancia a la Sal , Aclimatación , Animales , Cambio Climático , Arrecifes de Coral , Hong Kong , Salinidad , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...