Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-35849638

RESUMEN

The automation of liquid-handling routines offers great potential for fast, reproducible, and labor-reduced biomaterial fabrication but also requires the development of special protocols. Competitive systems demand for a high degree in miniaturization and parallelization while maintaining flexibility regarding the experimental design. Today, there are only a few possibilities for automated fabrication of biomaterials inside multiwell plates. We have previously demonstrated that streptavidin-based biomimetic platforms can be employed to study cellular behaviors on biomimetic surfaces. So far, these self-assembled materials were made by stepwise assembly of the components using manual pipetting. In this work, we introduce for the first time a fully automated and adaptable workflow to functionalize glass-bottom multiwell plates with customized biomimetic platforms deposited in single wells using a liquid-handling robot. We then characterize the cell response using automated image acquisition and subsequent analysis. Furthermore, the molecular surface density of the biomimetic platforms was characterized in situ using fluorescence-based image correlation spectroscopy. These measurements were in agreement with standard ex situ spectroscopic ellipsometry measurements. Due to automation, we could do a proof of concept to study the effect of heparan sulfate on the bioactivity of bone morphogenetic proteins on myoblast cells, using four different bone morphogenetic proteins (BMPs) (2, 4, 6, and 7) in parallel, at five increasing concentrations. Using such an automated self-assembly of biomimetic materials, it may be envisioned to further investigate the role of a large variety of extracellular matrix (ECM) components and growth factors on cell signaling.

2.
Anal Chem ; 94(17): 6521-6528, 2022 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-35446542

RESUMEN

We have established a self-calibrated method, called pbFFS for photobleaching fluctuation fluorescence spectroscopy, which aims to characterize molecules or particles labeled with an unknown distribution of fluorophores. Using photobleaching as a control parameter, pbFFS provides information on the distribution of fluorescent labels and a reliable estimation of the absolute density or concentration of these molecules. We present a complete theoretical derivation of the pbFFS approach and experimentally apply it to measure the surface density of a monolayer of fluorescently tagged streptavidin molecules, which can be used as a base platform for biomimetic systems. The surface density measured by pbFFS is consistent with the results of spectroscopic ellipsometry, a standard surface technique. However, pbFFS has two main advantages: it enables in situ characterization (no dedicated substrates are required) and can be applied to low masses of adsorbed molecules, which we demonstrate here by quantifying the density of biotin-Atto molecules that bind to the streptavidin layer. In addition to molecules immobilized on a surface, we also applied pbFFS to molecules diffusing in solution, to confirm the distribution of fluorescent labels found on a surface. Hence, pbFFS provides a set of tools for investigating the molecules labeled with a variable number of fluorophores, with the aim of quantifying either the number of molecules or the distribution of fluorescent labels, the latter case being especially relevant for oligomerization studies.


Asunto(s)
Biotina , Colorantes Fluorescentes , Biotina/química , Colorantes Fluorescentes/química , Fotoblanqueo , Espectrometría de Fluorescencia/métodos , Estreptavidina
3.
Opt Express ; 28(22): 32936-32954, 2020 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-33114968

RESUMEN

Speckle-correlation imaging is a family of methods that makes use of the "memory effect" to image objects hidden behind visually opaque layers. Here, we show that a correlation analysis can be applied to quantitative imaging of an ensemble of dynamic fluorescent beads diffusing on a 2D surface. We use an epi-fluorescence microscope where both the illumination and detection light patterns are speckled, due to light scattering by a thin disordered layer. The spatio-temporal cross-correlation of the detection speckle pattern is calculated as a function of lag time and spatial shift and is used to determine the diffusion constant and number of fluorescent particles in the sample without requiring any phase retrieval procedure. It is worth to note that the "memory effect" range is not required to extend beyond a distance of few speckle grains, thus making our method potentially useful for nearly arbitrary values of the thickness of the scattering layer.

4.
Biomed Opt Express ; 11(4): 2277-2297, 2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-32341883

RESUMEN

Coherent light scattered by tissues brings structural and dynamic information, at depth, that standard imaging techniques cannot reach. Dynamics of cells or sub-cellular elements can be measured thanks to dynamic light scattering in thin samples (single scattering regime) or thanks to diffusive wave spectroscopy in thick samples (diffusion regime). Here, we address the intermediate regime and provide an analytical relationship between scattered light fluctuations and the distribution of cell displacements as a function of time. We illustrate our method by characterizing cell motility inside half millimeter thick multicellular aggregates.

5.
Opt Express ; 27(14): 19382-19397, 2019 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-31503698

RESUMEN

In the presence of strong light scattering, as often encountered in biological tissue, optical microscopy becomes challenging and technical demanding. Beside image quality, the quantitative determination of molecular properties is also strongly affected by scattering. We have carried out fluorescence correlation spectroscopy (FCS) experiments, in a solution of fluorophores, through a sparse scattering layer made of dielectric beads. We observe that the fluorescence signal steadily decreases as the focus is moved away from the scattering layer. By contrast, the estimated number of molecules recovers its normal value beyond a characteristic distance of about twice the bead diameters, below which it is strongly biased. Accompanying theoretical modeling demonstrates how diffraction and refraction by the scattering layer and their impact on FCS measurements depend on size and refractive index of the beads.

6.
Mol Biol Cell ; 30(2): 181-190, 2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30462575

RESUMEN

Integrins are transmembrane receptors that have a pivotal role in mechanotransduction processes by connecting the extracellular matrix to the cytoskeleton. Although it is well established that integrin activation/inhibition cycles are due to highly dynamic interactions, whether integrin mobility depends on local tension and cytoskeletal organization remains surprisingly unclear. Using an original approach combining micropatterning on glass substrates to induce standardized local mechanical constraints within a single cell with temporal image correlation spectroscopy, we measured the mechanosensitive response of integrin mobility at the whole cell level and in adhesion sites under different mechanical constraints. Contrary to ß1 integrins, high tension increases ß3 integrin residence time in adhesive regions. Chimeric integrins and structure-function studies revealed that the ability of ß3 integrins to specifically sense local tensional organization is mostly encoded by its cytoplasmic domain and is regulated by tuning the affinity of its NPXY domains through phosphorylation by Src family kinases.


Asunto(s)
Integrina beta1/metabolismo , Integrina beta3/metabolismo , Familia-src Quinasas/metabolismo , Animales , Fenómenos Biomecánicos , Adhesión Celular , Fibroblastos/citología , Fibroblastos/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Integrina beta3/química , Mecanotransducción Celular , Ratones , Modelos Biológicos , Fosforilación , Dominios Proteicos , Transporte de Proteínas , Análisis Espectral , Familia-src Quinasas/antagonistas & inhibidores
7.
Opt Express ; 25(13): 15558-15571, 2017 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-28788978

RESUMEN

Adaptive optics (AO) strategies using optimization-based, sensorless approaches are widely used, especially for microscopy applications. To converge rapidly to the best correction, such approaches require that a quality metric and a set of modes be chosen optimally. Fluorescence fluctuations microscopy, a family of methods that provides quantitative measurements of molecular concentration and mobility in living specimen, is in particular need of adaptive optics, since its results can be strongly biased by optical aberrations. We examined two possible metrics for sensorless AO, measured in a solution of fluorophores diffusing in 3D: the fluorescence count rate and the molecular brightness (or number of photons detected per molecule in the observation volume). We studied their respective measurement noise and sensitivity to aberrations. Then, AO correction accuracy was experimentally assessed by measuring the residual aberration after correcting a known wavefront. We proposed a theoretical framework to predict the correction accuracy, knowing the metric measurement noise and sensitivity. In the small aberration range, the brightness allows more accurate corrections when fluorophores are few but bright, whereas the count rate performs better in more concentrated solutions. When correcting large aberrations, the count rate is expected to be a more reliable metric.

8.
Data Brief ; 13: 214-218, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28616454

RESUMEN

The data presented in this article are related to a research article entitled 'Thermal and high pressure inactivation kinetics of blueberry peroxidase' (Terefe et al., 2017) [1]. In this article, we report original data on the activity of partially purified blueberry peroxidase at different concentrations of hydrogen peroxide and phenlylenediamine as substrates and the effects of thermal and high pressure processing on the activity of the enzyme. Data on the stability of the enzyme during thermal (at temperatures ranging from 40 to 80 °C) and combined thermal-high pressure processing (100-690 MPa, 30-90 °C) are included in this report. The data are presented in this format in order to facilitate comparison with data from other researchers and allow statistical analyses and modeling by others in the field.

9.
Food Chem ; 232: 820-826, 2017 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-28490145

RESUMEN

This study for the first time investigated the stability and inactivation kinetics of blueberry peroxidase in model systems (McIlvaine buffer, pH=3.6, the typical pH of blueberry juice) during thermal (40-80°C) and combined high pressure-thermal processing (0.1-690MPa, 30-90°C). At 70-80°C, the thermal inactivation kinetics was best described by a biphasic model with ∼61% labile and ∼39% stable fractions at temperature between 70 and 75°C. High pressure inhibited the inactivation of the enzyme with no inactivation at pressures as high as 690MPa and temperatures less than 50°C. The inactivation kinetics of the enzyme at 60-70°C, and pressures higher than 500MPa was best described by a first order biphasic model with ∼25% labile fraction and 75% stable fraction. The activation energy values at atmospheric pressure were 548.6kJ/mol and 324.5kJ/mol respectively for the stable and the labile fractions.


Asunto(s)
Arándanos Azules (Planta)/enzimología , Peroxidasa/química , Proteínas de Plantas/química , Activación Enzimática , Calor , Cinética , Presión
10.
Biol Cell ; 109(3): 127-137, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27990663

RESUMEN

BACKGROUND INFORMATION: Integrins are key receptors that allow cells to sense and respond to their mechanical environment. Although they bind the same ligand, ß1 and ß3 integrins have distinct and cooperative roles in mechanotransduction. RESULTS: Using traction force microscopy on unconstrained cells, we show that deleting ß3 causes traction forces to increase, whereas the deletion of ß1 integrin results in a strong decrease of contractile forces. Consistently, loss of ß3 integrin also induces an increase in ß1 integrin activation. Using a genetic approach, we identified the phosphorylation of the distal NPXY domain as an essential process for ß3 integrin to be able to modulate traction forces. Loss of ß3 integrins also impacted cell shape and the spatial distribution of traction forces, by causing forces to be generated closer to the cell edge, and the cell shape. CONCLUSIONS: Our results emphasize the role of ß3 integrin in spatial distribution of cellular forces. We speculate that, by modulating its affinity with kindlin, ß3 integrins may be able to locate near the cell edge where it can control ß1 integrin activation and clustering. SIGNIFICANCE: Tensional homeostasis at the single cell level is performed by the ability of ß3 adhesions to negatively regulate the activation degree and spatial localization of ß1 integrins. By combining genetic approaches and new tools to analyze traction distribution and cell morphology on a population of cells we were able to identify the molecular partners involved in cellular forces regulation.


Asunto(s)
Proteínas Portadoras/genética , Fibroblastos/metabolismo , Integrina alfaVbeta3/genética , Integrina beta1/genética , Integrina beta3/genética , Mecanotransducción Celular , Secuencia de Aminoácidos , Animales , Fenómenos Biomecánicos , Proteínas Portadoras/metabolismo , Adhesión Celular , Línea Celular , Fibroblastos/ultraestructura , Eliminación de Gen , Regulación de la Expresión Génica , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Integrina alfaVbeta3/metabolismo , Integrina beta1/metabolismo , Integrina beta3/metabolismo , Ratones , Fosforilación , Unión Proteica , Dominios Proteicos
11.
Methods ; 94: 114-9, 2016 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-26210402

RESUMEN

There is increasing evidence that multicellular structures respond to mechanical cues, such as the confinement and compression exerted by the surrounding environment. In order to understand the response of tissues to stress, we investigate the effect of an isotropic stress on different biological systems. The stress is generated using the osmotic pressure induced by a biocompatible polymer. We compare the response of multicellular spheroids, individual cells and matrigel to the same osmotic perturbation. Our findings indicate that the osmotic pressure occasioned by polymers acts on these systems like an isotropic mechanical stress. When submitted to this pressure, the volume of multicellular spheroids decreases much more than one could expect from the behavior of individual cells.


Asunto(s)
Esferoides Celulares/fisiología , Resinas Acrílicas/química , Animales , Agregación Celular , Técnicas de Cultivo de Célula , Línea Celular Tumoral , Tamaño de la Célula , Mecanotransducción Celular , Ratones , Presión Osmótica
12.
Food Chem ; 188: 193-200, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26041182

RESUMEN

Partially purified blueberry polyphenol oxidase (PPO) in Mcllvaine buffer (pH=3.6, typical pH of blueberry juice) was subjected to processing at isothermal-isobaric conditions at temperatures from 30 to 80 °C and pressure from 0.1 to 700 MPa. High pressure processing at 30-50 °C at all pressures studied caused irreversible PPO activity increase with a maximum of 6.1 fold increase at 500 MPa and 30 °C. Treatments at mild pressure-mild temperature conditions (0.1-400 MPa, 60 °C) also caused up to 3 fold PPO activity increase. Initial activity increase followed by a decrease occurred at relatively high pressure-mild temperature (400-600 MPa, 60 °C) and mild pressure-high temperature (0.1-400 MPa, 70-80 °C) combinations. At temperatures higher than 76 °C, monotonic decrease in PPO activity occurred at 0.1 MPa and pressures higher than 500 MPa. The activation/inactivation kinetics of the enzyme was successfully modelled assuming consecutive reactions in series with activation followed by inactivation.


Asunto(s)
Arándanos Azules (Planta)/enzimología , Catecol Oxidasa/metabolismo , Frutas/enzimología , Activación Enzimática , Calor , Cinética , Presión , Temperatura
13.
Biomed Opt Express ; 5(10): 3730-8, 2014 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-25360385

RESUMEN

In this study we demonstrate the use of adaptive optics to correct the biasing effects of optical aberrations when measuring the dynamics of molecules diffusing between cells in multicellular spheroids. Our results indicate that, on average, adaptive optics leads to a reduction of the 3D size of the point spread function that is statistically significant in terms of measured number of molecules and diffusion time. The sensorless approach, which uses the molecular brightness as optimization metric, is validated in a complex, highly heterogeneous, biological environment. This work paves the way towards the design of accurate diffusion measurements of molecules in thick biological specimens.

14.
Opt Lett ; 38(14): 2401-3, 2013 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-23939061

RESUMEN

We describe the effect of optical aberrations on fluorescence fluctuations microscopy (FFM), when focusing through a single living cell. FFM measurements are performed in an aqueous fluorescent solution and prove to be a highly sensitive tool to assess the optical aberrations introduced by the cell. We demonstrate an adaptive optics (AO) system to remove the aberration-related bias in the FFM measurements. Our data show that AO is not only useful when imaging deep in tissues but also when performing FFM measurements through a single cellular layer. This work paves the way for the application of FFM to complex three-dimensional multicellular samples.


Asunto(s)
Fibroblastos/citología , Microscopía Fluorescente/métodos , Fenómenos Ópticos , Análisis de la Célula Individual/métodos , Animales , Artefactos , Supervivencia Celular , Ratones
15.
PLoS One ; 8(7): e67566, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23861773

RESUMEN

Heat shock factor 1 is the key transcription factor of the heat shock response. Its function is to protect the cell against the deleterious effects of stress. Upon stress, HSF1 binds to and transcribes hsp genes and repeated satellite III (sat III) sequences present at the 9q12 locus. HSF1 binding to pericentric sat III sequences forms structures known as nuclear stress bodies (nSBs). nSBs represent a natural amplification of RNA pol II dependent transcription sites. Dynamics of HSF1 and of deletion mutants were studied in living cells using multi-confocal Fluorescence Correlation Spectroscopy (mFCS) and Fluorescence Recovery After Photobleaching (FRAP). In this paper, we show that HSF1 dynamics modifications upon heat shock result from both formation of high molecular weight complexes and increased HSF1 interactions with chromatin. These interactions involve both DNA binding with Heat Shock Element (HSE) and sat III sequences and a more transient sequence-independent binding likely corresponding to a search for more specific targets. We find that the trimerization domain is required for low affinity interactions with chromatin while the DNA binding domain is required for site-specific interactions of HSF1 with DNA.


Asunto(s)
Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas Mutantes/metabolismo , Mutación/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Animales , Permeabilidad de la Membrana Celular , Estructuras del Núcleo Celular/metabolismo , Fraccionamiento Químico , ADN/metabolismo , Proteínas de Unión al ADN/química , Difusión , Recuperación de Fluorescencia tras Fotoblanqueo , Técnicas de Silenciamiento del Gen , Proteínas Fluorescentes Verdes/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Células HeLa , Factores de Transcripción del Choque Térmico , Respuesta al Choque Térmico/genética , Humanos , Espacio Intracelular/metabolismo , Ratones , Peso Molecular , Proteínas Mutantes/química , Unión Proteica , Estructura Terciaria de Proteína , Transporte de Proteínas , ARN/metabolismo , Espectrometría de Fluorescencia , Estrés Fisiológico , Fracciones Subcelulares/metabolismo , Factores de Transcripción/química , Activación Transcripcional/genética
16.
Biophys J ; 103(6): 1110-9, 2012 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-22995483

RESUMEN

Heat shock triggers a transient and ubiquitous response, the function of which is to protect cells against stress-induced damage. The heat-shock response is controlled by a key transcription factor known as heat shock factor 1 (HSF1). We have developed a multiconfocal fluorescence correlation spectroscopy setup to measure the dynamics of HSF1 during the course of the heat-shock response. The system combines a spatial light modulator, to address several points of interest, and an electron-multiplying charge-coupled camera for fast multiconfocal recording of the photon streams. Autocorrelation curves with a temporal resolution of 14 µs were analyzed before and after heat shock on eGFP and HSF1-eGFP-expressing cells. Evaluation of the dynamic parameters of a diffusion-and-binding model showed a slower HSF1 diffusion after heat shock. It is also observed that the dissociation rate decreases after heat shock, whereas the association rate is not affected. In addition, thanks to the multiconfocal fluorescence correlation spectroscopy system, up to five spots could be simultaneously located in each cell nucleus. This made it possible to quantify the intracellular variability of the diffusion constant of HSF1, which is higher than that of inert eGFP molecules and increases after heat shock. This finding is consistent with the fact that heat-shock response is associated with an increase of HSF1 interactions with DNA and cannot be explained even partially by heat-induced modifications of nuclear organization.


Asunto(s)
Respuesta al Choque Térmico , Espectrometría de Fluorescencia/métodos , Sitios de Unión , Calibración , Línea Celular Tumoral , Supervivencia Celular , Colorantes Fluorescentes/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Cinética , Fotoblanqueo
17.
Front Biosci (Elite Ed) ; 3(2): 476-88, 2011 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-21196328

RESUMEN

We report a multi-confocal Fluorescence Correlation Spectroscopy (mFCS) technique that combines a Spatial Light Modulator (SLM), with an Electron Multiplying-CCD camera (EM-CCD). The SLM is used to produce a series of laser spots, while the pixels of the EM-CCD play the roles of virtual pinholes. The phase map addressed to the SLM, calculated by using the spherical wave approximation, makes it possible to produce several diffraction limited laser spots. The fastest acquisition mode leads to a time resolution of 100 microseconds. By using solutions of sulforhodamine G we demonstrated that the observation volumes are similar to that of a standard confocal set-up. mFCS experiments have also been conducted on two stable cell lines: mouse embryonic fibroblasts expressing eGFP-actin and H1299 cells expressing the heat shock factor fusion protein HSF1-eGFP. In the first case we could recover the diffusion constant of G-actin within the cytoplasm, although we were also sensitive to interactions with F-actin. Concerning HSF1, we could clearly observe the modifications of the number of molecules and of the HSF1 dynamics during heat shock.


Asunto(s)
Actinas/metabolismo , Espectrometría de Fluorescencia/instrumentación , Espectrometría de Fluorescencia/métodos , Animales , Línea Celular , Proteínas Fluorescentes Verdes/metabolismo , Procesamiento de Imagen Asistido por Computador/métodos , Análisis de los Mínimos Cuadrados , Ratones , Rodaminas
18.
Opt Express ; 19(27): 26839-49, 2011 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-22274266

RESUMEN

Fluorescence Correlation Spectroscopy (FCS) yields measurement parameters (number of molecules, diffusion time) that characterize the concentration and kinetics of fluorescent molecules within a supposedly known observation volume. Absolute derivation of concentrations and diffusion constants therefore requires preliminary calibrations of the confocal Point Spread Function with phantom solutions under perfectly controlled environmental conditions. In this paper, we quantify the influence of optical aberrations on single photon FCS and demonstrate a simple Adaptive Optics system for aberration correction. Optical aberrations are gradually introduced by focussing the excitation laser beam at increasing depths in fluorescent solutions with various refractive indices, which leads to drastic depth-dependent bias in the estimated FCS parameters. Aberration correction with a Deformable Mirror stabilizes these parameters within a range of several tens of µm into the solution. We also demonstrate, both theoretically and experimentally, that the molecular brightness scales as the Strehl ratio squared.


Asunto(s)
Artefactos , Diseño Asistido por Computadora , Lentes , Dispositivos Ópticos , Espectrometría de Fluorescencia/instrumentación , Diseño de Equipo , Análisis de Falla de Equipo , Retroalimentación
19.
J Phys Chem B ; 114(8): 2988-96, 2010 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-20143802

RESUMEN

Determining the number of fluorescent entities that are coupled to a given molecule (DNA, protein, etc.) is a key point of numerous biological studies, especially those based on a single molecule approach. Reliable methods are important, in this context, not only to characterize the labeling process but also to quantify interactions, for instance within molecular complexes. We combined fluorescence correlation spectroscopy (FCS) and photobleaching experiments to measure the effective number of molecules and the molecular brightness as a function of the total fluorescence count rate on solutions of cDNA (containing a few percent of C bases labeled with Alexa Fluor 647). Here, photobleaching is used as a control parameter to vary the experimental outputs (brightness and number of molecules). Assuming a Poissonian distribution of the number of fluorescent labels per cDNA, the FCS-photobleaching data could be easily fit to yield the mean number of fluorescent labels per cDNA strand (approximately = 2). This number could not be determined solely on the basis of the cDNA brightness, because of both the statistical distribution of the number of fluorescent labels and their unknown brightness when incorporated in cDNA. The statistical distribution of the number of fluorophores labeling cDNA was confirmed by analyzing the photon count distribution (with the cumulant method), which showed clearly that the brightness of cDNA strands varies from one molecule to the other. We also performed complementary continuous photobleaching experiments and found that the photobleaching decay rate of Alexa Fluor 647 in the excited state decreases by about 30% when incorporated into cDNA, while its nonradiative decay rate is increased such that the brightness of individual Alexa labels is decreased by 25% compared to free Alexa dyes.


Asunto(s)
ADN Complementario/química , Colorantes Fluorescentes/química , Fotoblanqueo , Soluciones , Espectrometría de Fluorescencia , Coloración y Etiquetado
20.
J Biophotonics ; 1(5): 408-18, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19343664

RESUMEN

Spatial fluorescence cross-correlation spectroscopy is a rarely investigated version of fluorescence correlation spectroscopy, in which the fluorescence signals from different observation volumes are cross-correlated. In the reported experiments, two observation volumes, typically shifted by a few microm, are produced, with a spatial light modulator and two adjustable pinholes. We illustrated the feasibility and potentiality of this technique by: i) measuring molecular flows, in the range 0.2-1.5 microm/ms, of solutions seeded with fluorescent nanobeads or rhodamine molecules (simulating active transport phenomenons); ii) investigating the permeability of the phospholipidic membrane of giant unilamellar vesicles versus hydrophilic or hydrophobic molecules (in that case the laser spots were set on both sides of the membrane). Theoretical descriptions are proposed together with a discussion about fluorescence-correlation-spectroscopy-based, alternative methods.


Asunto(s)
Membranas Artificiales , Espectrometría de Fluorescencia/métodos , Colorantes Fluorescentes/química , Permeabilidad , Fosfolípidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...