Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 30(19): 54723-54741, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36881220

RESUMEN

Engineers and scientists are increasingly interested in clean energy options to replace fossil fuels in response to rising environmental concerns and dwindling fossil fuel resources. There has been an increase in the installation of renewable energy resources, and at the same time, conventional energy conversion systems have improved in efficiency. In this paper, several multi-generation systems based on geothermal energy are modeled, assessed, and optimized which employ an organic Rankine cycle and a proton-exchange membrane electrolyzer subsystem in five different configurations. Based on the results, the evaporator mass flow rate and inlet temperature, turbine efficiency, and inlet temperature are the most influential parameters on system outputs, namely, net output work, hydrogen production, energy efficiency, and cost rate. In this study, the city of Zanjan (Iran) is selected for a case study, and the results of system energy efficiency for changes in ambient temperature are examined during the four seasons of the year. To determine the optimal values of the objective functions, energy efficiency, and cost rate, NSGA-II multi-objective genetic algorithm is employed, and a Pareto chart is derived. The system's irreversibility and performance are gauged by energy and exergy analyses. At the optimum state, the best configuration yields an energy efficiency and cost rate of 0.65% and 17.40 $/h, respectively.


Asunto(s)
Energía Geotérmica , Hidrógeno , Protones , Energía Renovable , Combustibles Fósiles , Electricidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...