Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Chem Neurosci ; 15(3): 671-684, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38238043

RESUMEN

α1A-, α1B-, and α1D-adrenoceptors (α1-ARs) are members of the adrenoceptor G protein-coupled receptor family that are activated by adrenaline (epinephrine) and noradrenaline. α1-ARs are clinically targeted using antagonists that have minimal subtype selectivity, such as prazosin and tamsulosin, to treat hypertension and benign prostatic hyperplasia, respectively. Abundant expression of α1-ARs in the heart and central nervous system (CNS) makes these receptors potential targets for the treatment of cardiovascular and CNS disorders, such as heart failure, epilepsy, and Alzheimer's disease. Our understanding of the precise physiological roles of α1-ARs, however, and their involvement in disease has been hindered by the lack of sufficiently subtype-selective tool compounds, especially for α1B-AR. Here, we report the discovery of 4-[(2-hydroxyethyl)amino]-6-methyl-2H-chromen-2-one (Cpd1), as an α1B-AR antagonist that has 10-15-fold selectivity over α1A-AR and α1D-AR. Through computational and site-directed mutagenesis studies, we have identified the binding site of Cpd1 in α1B-AR and propose the molecular basis of α1B-AR selectivity, where the nonconserved V19745.52 residue plays a major role, with contributions from L3146.55 within the α1B-AR pocket. By exploring the structure-activity relationships of Cpd1 at α1B-AR, we have also identified 3-[(cyclohexylamino)methyl]-6-methylquinolin-2(1H)-one (Cpd24), which has a stronger binding affinity than Cpd1, albeit with reduced selectivity for α1B-AR. Cpd1 and Cpd24 represent potential leads for α1B-AR-selective drug discovery and novel tool molecules to further study the physiology of α1-ARs.


Asunto(s)
Prazosina , Receptores Adrenérgicos alfa 1 , Receptores Adrenérgicos alfa 1/metabolismo , Tamsulosina , Norepinefrina
2.
Protein Sci ; 32(11): e4801, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37805830

RESUMEN

G protein-coupled receptors (GPCRs) are medically important membrane proteins that sample inactive, intermediate, and active conformational states characterized by relatively slow interconversions (~µs-ms). On a faster timescale (~ps-ns), the conformational landscape of GPCRs is governed by the rapid dynamics of amino acid side chains. Such dynamics are essential for protein functions such as ligand recognition and allostery. Unfortunately, technical challenges have almost entirely precluded the study of side-chain dynamics for GPCRs. Here, we investigate the rapid side-chain dynamics of a thermostabilized α1B -adrenergic receptor (α1B -AR) as probed by methyl relaxation. We determined order parameters for Ile, Leu, and Val methyl groups in the presence of inverse agonists that bind orthosterically (prazosin, tamsulosin) or allosterically (conopeptide ρ-TIA). Despite the differences in the ligands, the receptor's overall side-chain dynamics are very similar, including those of the apo form. However, ρ-TIA increases the flexibility of Ile1764×56 and possibly of Ile2145×49 , adjacent to Pro2155×50 of the highly conserved P5×50 I3×40 F6×44 motif crucial for receptor activation, suggesting differences in the mechanisms for orthosteric and allosteric receptor inactivation. Overall, increased Ile side-chain rigidity was found for residues closer to the center of the membrane bilayer, correlating with denser packing and lower protein surface exposure. In contrast to two microbial membrane proteins, in α1B -AR Leu exhibited higher flexibility than Ile side chains on average, correlating with the presence of Leu in less densely packed areas and with higher protein-surface exposure than Ile. Our findings demonstrate the feasibility of studying receptor-wide side-chain dynamics in GPCRs to gain functional insights.


Asunto(s)
Agonismo Inverso de Drogas , Receptores Acoplados a Proteínas G , Espectroscopía de Resonancia Magnética , Receptores Acoplados a Proteínas G/metabolismo , Proteínas de la Membrana/química , Ligandos
3.
Nat Commun ; 13(1): 382, 2022 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-35046410

RESUMEN

α-adrenergic receptors (αARs) are G protein-coupled receptors that regulate vital functions of the cardiovascular and nervous systems. The therapeutic potential of αARs, however, is largely unexploited and hampered by the scarcity of subtype-selective ligands. Moreover, several aminergic drugs either show off-target binding to αARs or fail to interact with the desired subtype. Here, we report the crystal structure of human α1BAR bound to the inverse agonist (+)-cyclazosin, enabled by the fusion to a DARPin crystallization chaperone. The α1BAR structure allows the identification of two unique secondary binding pockets. By structural comparison of α1BAR with α2ARs, and by constructing α1BAR-α2CAR chimeras, we identify residues 3.29 and 6.55 as key determinants of ligand selectivity. Our findings provide a basis for discovery of α1BAR-selective ligands and may guide the optimization of aminergic drugs to prevent off-target binding to αARs, or to elicit a selective interaction with the desired subtype.


Asunto(s)
Cristalografía por Rayos X , Receptores Adrenérgicos alfa 1/química , Sitios de Unión , Células HEK293 , Humanos , Ligandos , Lípidos/química , Modelos Moleculares , Quinazolinas/química , Quinazolinas/metabolismo , Quinoxalinas/química , Quinoxalinas/metabolismo , Receptores Adrenérgicos alfa 2/química
4.
Sci Adv ; 7(5)2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33571132

RESUMEN

Neurotensin receptor 1 (NTSR1) and related G protein-coupled receptors of the ghrelin family are clinically unexploited, and several mechanistic aspects of their activation and inactivation have remained unclear. Enabled by a new crystallization design, we present five new structures: apo-state NTSR1 as well as complexes with nonpeptide inverse agonists SR48692 and SR142948A, partial agonist RTI-3a, and the novel full agonist SRI-9829, providing structural rationales on how ligands modulate NTSR1. The inverse agonists favor a large extracellular opening of helices VI and VII, undescribed so far for NTSR1, causing a constriction of the intracellular portion. In contrast, the full and partial agonists induce a binding site contraction, and their efficacy correlates with the ability to mimic the binding mode of the endogenous agonist neurotensin. Providing evidence of helical and side-chain rearrangements modulating receptor activation, our structural and functional data expand the mechanistic understanding of NTSR1 and potentially other peptidergic receptors.

5.
Biochim Biophys Acta Biomembr ; 1862(10): 183354, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32413443

RESUMEN

Sample preparation for NMR studies of G protein-coupled receptors faces special requirements: Proteins need to be stable for prolonged measurements at elevated temperatures, they should ideally be uniformly labeled with the stable isotopes 13C, 15N, and all carbon-bound protons should be replaced by deuterons. In addition, certain NMR experiments require protonated methyl groups in the presence of a perdeuterated background. All these requirements are most easily satisfied when using Escherichia coli as the expression host. Here we describe a workflow, starting from a temperature-stabilized mutant of the α1B-adrenergic receptor, obtained using the CHESS methodology, into an even more stable species, in which flexible parts from termini were removed and the intracellular loop 3 (ICL3) was stabilized against proteolytic cleavage. The yield after purification corresponds to 1-2 mg/L of D2O culture. The final purification step is ligand-affinity chromatography to ensure that only well-folded ligand-binding protein is isolated. Proper selection of detergent has a remarkable influence on the quality of NMR spectra. All optimization steps of sequence and detergent are monitored on a small scale by monitoring the melting temperature and long-term thermal stability to allow for screening of many conditions. The stabilized mutant of the α1B-adrenergic receptor was additionally incorporated in nanodiscs, but displayed slightly inferior spectra compared to a sample in detergent micelles. Finally, both [15N,1H]- as well as [13C,1H]-HSQC spectra are shown highlighting the high quality of the final NMR sample. Importantly, the quality of [13C,1H]-HSQC spectra indicates that the so prepared receptor could be used for studying side-chain dynamics.


Asunto(s)
Resonancia Magnética Nuclear Biomolecular/métodos , Receptores Adrenérgicos alfa 1/metabolismo , Escherichia coli/genética , Ligandos , Unión Proteica , Receptores Adrenérgicos alfa 1/química , Receptores Adrenérgicos alfa 1/genética
6.
ACS Chem Biol ; 13(4): 1090-1102, 2018 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-29537256

RESUMEN

α1A- and α1B-adrenoceptors (α1A-AR and α1B-AR) are closely related G protein-coupled receptors (GPCRs) that modulate the cardiovascular and nervous systems in response to binding epinephrine and norepinephrine. The GPCR gene superfamily is made up of numerous subfamilies that, like α1A-AR and α1B-AR, are activated by the same endogenous agonists but may modulate different physiological processes. A major challenge in GPCR research and drug discovery is determining how compounds interact with receptors at the molecular level, especially to assist in the optimization of drug leads. Nuclear magnetic resonance spectroscopy (NMR) can provide great insight into ligand-binding epitopes, modes, and kinetics. Ideally, ligand-based NMR methods require purified, well-behaved protein samples. The instability of GPCRs upon purification in detergents, however, makes the application of NMR to study ligand binding challenging. Here, stabilized α1A-AR and α1B-AR variants were engineered using Cellular High-throughput Encapsulation, Solubilization, and Screening (CHESS), allowing the analysis of ligand binding with Saturation Transfer Difference NMR (STD NMR). STD NMR was used to map the binding epitopes of epinephrine and A-61603 to both receptors, revealing the molecular determinants for the selectivity of A-61603 for α1A-AR over α1B-AR. The use of stabilized GPCRs for ligand-observed NMR experiments will lead to a deeper understanding of binding processes and assist structure-based drug design.


Asunto(s)
Espectroscopía de Resonancia Magnética/métodos , Receptores Adrenérgicos/metabolismo , Animales , Células COS , Chlorocebus aethiops , Epinefrina/metabolismo , Imidazoles/metabolismo , Ligandos , Norepinefrina/metabolismo , Receptores Acoplados a Proteínas G , Tetrahidronaftalenos/metabolismo
7.
Protein Expr Purif ; 108: 106-114, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25461958

RESUMEN

G protein-coupled receptors (GPCRs) are key players of cell signaling, thus representing important drug targets for the treatment of human diseases. Since inherent difficulties in receptor production and handling have precluded the application of many in vitro experiments, major questions about GPCR mechanisms and dynamics remain elusive to date. We recently used directed evolution in Escherichia coli on neurotensin receptor 1 (NTR1) for the generation of GPCR variants with greatly elevated functional expression levels and with excellent stability in detergent micelles. In this work we outline a highly efficient purification method for our evolved receptor variants, which is based on the application of an inexpensive, disposable high-affinity ligand column as the initial purification step. The ligand resin allows isolation of correctly folded GPCR variants directly from whole E. coli cell lysates at the scale of 10mg and it permits preparations of agonist- and antagonist-bound receptor samples. The purification principle presented here was key to the first structures of signaling-active NTR1 variants (Egloff et al., 2014). Since E. coli is uniquely suitable for the production of fully deuterated proteins, our method provides the basis for an array of NMR experiments that were not feasible for GPCRs to date, but which will shed light on novel aspects of receptor function and dynamics.


Asunto(s)
Cromatografía de Afinidad/métodos , Escherichia coli/metabolismo , Receptores de Neurotensina , Escherichia coli/genética , Humanos , Receptores de Neurotensina/biosíntesis , Receptores de Neurotensina/química , Receptores de Neurotensina/genética , Receptores de Neurotensina/aislamiento & purificación , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...