Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Pharm Biomed Anal ; 141: 87-94, 2017 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-28432941

RESUMEN

The aim of this work is to develop the first validated HPLC-UV method quantification in blood serum for a new endoplasmic reticulum (ER)-specific benzophenazine photosensitizer (OR-141). A fast solid phase extraction (SPE) cleaning sample procedure was achieved on C18 encapped (ec) SPE cartridges and the separation was performed on a RP-18e column (5µM) using an isocratic elution with methanol. The method has been fully validated according to accuracy profiles based on total error and tolerance intervals. Calibration was performed in the matrix and trueness (<4.25% relative bias), repeatability (<4.75% relative standard deviation (RSD)), intermediate precision (<5.37% RSD), selectivity, response function, linearity, and dilution effect were evaluated for both OR-141 regio-isomers. Afterwards the developed method was successfully applied to perform the quantitative determination of OR-141 in mouse blood serum samples in a preliminary pharmacokinetic study.


Asunto(s)
Retículo Endoplásmico , Animales , Cromatografía Líquida de Alta Presión , Ratones , Fármacos Fotosensibilizantes , Reproducibilidad de los Resultados , Suero , Extracción en Fase Sólida
2.
Hepatology ; 59(3): 924-34, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23832580

RESUMEN

UNLABELLED: Tumor heterogeneity is a major obstacle for developing effective anticancer treatments. Recent studies have pointed to large stochastic genetic heterogeneity within cancer lesions, where no pattern seems to exist that would enable a more structured targeted therapy approach. Because to date no similar information is available at the protein (phenotype) level, we employed matrix assisted laser desorption ionization (MALDI) image-guided proteomics and explored the heterogeneity of extracellular and membrane subproteome in a unique collection of eight fresh human colorectal carcinoma (CRC) liver metastases. Monitoring the spatial distribution of over 1,000 proteins, we found unexpectedly that all liver metastasis lesions displayed a reproducible, zonally delineated pattern of functional and therapeutic biomarker heterogeneity. The peritumoral region featured elevated lipid metabolism and protein synthesis, the rim of the metastasis displayed increased cellular growth, movement, and drug metabolism, whereas the center of the lesion was characterized by elevated carbohydrate metabolism and DNA-repair activity. From the aspect of therapeutic targeting, zonal expression of known and novel biomarkers was evident, reinforcing the need to select several targets in order to achieve optimal coverage of the lesion. Finally, we highlight two novel antigens, LTBP2 and TGFBI, whose expression is a consistent feature of CRC liver metastasis. We demonstrate their in vivo antibody-based targeting and highlight their potential usefulness for clinical applications. CONCLUSION: The proteome heterogeneity of human CRC liver metastases has a distinct, organized pattern. This particular hallmark can now be used as part of the strategy for developing rational therapies based on multiple sets of targetable antigens.


Asunto(s)
Neoplasias Colorrectales , Heterogeneidad Genética , Neoplasias Hepáticas , Proteómica/métodos , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/terapia , Regulación Neoplásica de la Expresión Génica , Ensayos Analíticos de Alto Rendimiento , Humanos , Metabolismo de los Lípidos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/secundario , Neoplasias Hepáticas/terapia , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
3.
Biochim Biophys Acta ; 1830(10): 4513-23, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23707715

RESUMEN

BACKGROUND: Thiamine triphosphate (ThTP) is present in most organisms and might be involved in intracellular signaling. In mammalian cells, the cytosolic ThTP level is controlled by a specific thiamine triphosphatase (ThTPase), belonging to the CYTH superfamily of proteins. CYTH proteins are present in all superkingdoms of life and act on various triphosphorylated substrates. METHODS: Using crystallography, mass spectrometry and mutational analysis, we identified the key structural determinants of the high specificity and catalytic efficiency of mammalian ThTPase. RESULTS: Triphosphate binding requires three conserved arginines while the catalytic mechanism relies on an unusual lysine-tyrosine dyad. By docking of the ThTP molecule in the active site, we found that Trp-53 should interact with the thiazole part of the substrate molecule, thus playing a key role in substrate recognition and specificity. Sea anemone and zebrafish CYTH proteins, which retain the corresponding Trp residue, are also specific ThTPases. Surprisingly, the whole chromosome region containing the ThTPase gene is lost in birds. CONCLUSIONS: The specificity for ThTP is linked to a stacking interaction between the thiazole heterocycle of thiamine and a tryptophan residue. The latter likely plays a key role in the secondary acquisition of ThTPase activity in early metazoan CYTH enzymes, in the lineage leading from cnidarians to mammals. GENERAL SIGNIFICANCE: We show that ThTPase activity is not restricted to mammals as previously thought but is an acquisition of early metazoans. This, and the identification of critically important residues, allows us to draw an evolutionary perspective of the CYTH family of proteins.


Asunto(s)
Tiamina-Trifosfatasa/metabolismo , Secuencia de Aminoácidos , Animales , Biocatálisis , Dicroismo Circular , Cristalografía por Rayos X , Humanos , Modelos Moleculares , Simulación del Acoplamiento Molecular , Datos de Secuencia Molecular , Conformación Proteica , Homología de Secuencia de Aminoácido , Espectrometría de Masa por Ionización de Electrospray , Especificidad por Sustrato , Tiamina-Trifosfatasa/química
4.
PLoS One ; 7(9): e43879, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22984449

RESUMEN

BACKGROUND: We recently characterized a specific inorganic triphosphatase (PPPase) from Nitrosomonas europaea. This enzyme belongs to the CYTH superfamily of proteins. Many bacterial members of this family are annotated as predicted adenylate cyclases, because one of the founding members is CyaB adenylate cyclase from A. hydrophila. The aim of the present study is to determine whether other members of the CYTH protein family also have a PPPase activity, if there are PPPase activities in animal tissues and what enzymes are responsible for these activities. METHODOLOGY/PRINCIPAL FINDINGS: Recombinant enzymes were expressed and purified as GST- or His-tagged fusion proteins and the enzyme activities were determined by measuring the release of inorganic phosphate. We show that the hitherto uncharacterized E. coli CYTH protein ygiF is a specific PPPase, but it contributes only marginally to the total PPPase activity in this organism, where the main enzyme responsible for hydrolysis of inorganic triphosphate (PPP(i)) is inorganic pyrophosphatase. We further show that CyaB hydrolyzes PPP(i) but this activity is low compared to its adenylate cyclase activity. Finally we demonstrate a high PPPase activity in mammalian and quail tissue, particularly in the brain. We show that this activity is mainly due to Prune, an exopolyphosphatase overexpressed in metastatic tumors where it promotes cell motility. CONCLUSIONS AND GENERAL SIGNIFICANCE: We show for the first time that PPPase activities are widespread in bacteria and animals. We identified the enzymes responsible for these activities but we were unable to detect significant amounts of PPP(i) in E. coli or brain extracts using ion chromatography and capillary electrophoresis. The role of these enzymes may be to hydrolyze PPP(i), which could be cytotoxic because of its high affinity for Ca(2+), thereby interfering with Ca(2+) signaling.


Asunto(s)
Bacterias/enzimología , Compuestos Inorgánicos/metabolismo , Mamíferos/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Adenosina Trifosfato/metabolismo , Adenilil Ciclasas/metabolismo , Secuencia de Aminoácidos , Animales , Biocatálisis , Supervivencia Celular , Electroforesis Capilar , Escherichia coli/enzimología , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Hidrólisis , Pirofosfatasa Inorgánica/metabolismo , Datos de Secuencia Molecular , Nitrosomonas europaea/enzimología , Fosfoproteínas Fosfatasas/química , Polifosfatos/aislamiento & purificación , Polifosfatos/metabolismo , Ratas , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Fracciones Subcelulares/enzimología , Especificidad por Sustrato
5.
J Biol Chem ; 286(39): 34023-35, 2011 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-21840996

RESUMEN

The CYTH superfamily of proteins is named after its two founding members, the CyaB adenylyl cyclase from Aeromonas hydrophila and the human 25-kDa thiamine triphosphatase. Because these proteins often form a closed ß-barrel, they are also referred to as triphosphate tunnel metalloenzymes (TTM). Functionally, they are characterized by their ability to bind triphosphorylated substrates and divalent metal ions. These proteins exist in most organisms and catalyze different reactions depending on their origin. Here we investigate structural and catalytic properties of the recombinant TTM protein from Nitrosomonas europaea (NeuTTM), a 19-kDa protein. Crystallographic data show that it crystallizes as a dimer and that, in contrast to other TTM proteins, it has an open ß-barrel structure. We demonstrate that NeuTTM is a highly specific inorganic triphosphatase, hydrolyzing tripolyphosphate (PPP(i)) with high catalytic efficiency in the presence of Mg(2+). These data are supported by native mass spectrometry analysis showing that the enzyme binds PPP(i) (and Mg-PPP(i)) with high affinity (K(d) < 1.5 µm), whereas it has a low affinity for ATP or thiamine triphosphate. In contrast to Aeromonas and Yersinia CyaB proteins, NeuTTM has no adenylyl cyclase activity, but it shares several properties with other enzymes of the CYTH superfamily, e.g. heat stability, alkaline pH optimum, and inhibition by Ca(2+) and Zn(2+) ions. We suggest a catalytic mechanism involving a catalytic dyad formed by Lys-52 and Tyr-28. The present data provide the first characterization of a new type of phosphohydrolase (unrelated to pyrophosphatases or exopolyphosphatases), able to hydrolyze inorganic triphosphate with high specificity.


Asunto(s)
Proteínas Bacterianas/química , Hidrolasas/química , Metaloproteínas/química , Nitrosomonas europaea/enzimología , Proteínas Bacterianas/genética , Catálisis , Hidrolasas/genética , Metaloproteínas/genética , Nitrosomonas europaea/genética , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Relación Estructura-Actividad
6.
FEBS J ; 276(12): 3256-68, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19438713

RESUMEN

Thiamine and its three phosphorylated derivatives (mono-, di- and triphosphate) occur naturally in most cells. Recently, we reported the presence of a fourth thiamine derivative, adenosine thiamine triphosphate, produced in Escherichia coli in response to carbon starvation. Here, we show that the chemical synthesis of adenosine thiamine triphosphate leads to another new compound, adenosine thiamine diphosphate, as a side product. The structure of both compounds was confirmed by MS analysis and 1H-, 13C- and 31P-NMR, and some of their chemical properties were determined. Our results show an upfield shifting of the C-2 proton of the thiazolium ring in adenosine thiamine derivatives compared with conventional thiamine phosphate derivatives. This modification of the electronic environment of the C-2 proton might be explained by a through-space interaction with the adenosine moiety, suggesting U-shaped folding of adenosine thiamine derivatives. Such a structure in which the C-2 proton is embedded in a closed conformation can be located using molecular modeling as an energy minimum. In E. coli, adenosine thiamine triphosphate may account for 15% of the total thiamine under energy stress. It is less abundant in eukaryotic organisms, but is consistently found in mammalian tissues and some cell lines. Using HPLC, we show for the first time that adenosine thiamine diphosphate may also occur in small amounts in E. coli and in vertebrate liver. The discovery of two natural thiamine adenine compounds further highlights the complexity and diversity of thiamine biochemistry, which is not restricted to the cofactor role of thiamine diphosphate.


Asunto(s)
Adenina/análogos & derivados , Adenosina Difosfato/química , Adenosina Trifosfato/química , Tiamina Pirofosfato/química , Tiamina Trifosfato/química , Células 3T3 , Adenina/análisis , Adenina/síntesis química , Adenina/química , Adenosina Difosfato/análisis , Adenosina Difosfato/síntesis química , Adenosina Trifosfato/análisis , Adenosina Trifosfato/síntesis química , Animales , Química Encefálica , Línea Celular Tumoral , Cromatografía Líquida de Alta Presión , Escherichia coli/química , Fibroblastos/química , Humanos , Riñón/química , Hígado/química , Espectroscopía de Resonancia Magnética , Ratones , Modelos Moleculares , Estructura Molecular , Músculo Esquelético/química , Miocardio/química , Codorniz , Espectrometría de Fluorescencia , Espectrometría de Masa por Ionización de Electrospray , Tiamina Pirofosfato/análisis , Tiamina Pirofosfato/síntesis química , Tiamina Trifosfato/análisis , Tiamina Trifosfato/síntesis química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA