Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Drug Target Insights ; 17: 39-44, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37070031

RESUMEN

Introduction: Mechanical ventilation (MV) is a life-saving approach in critically ill patients. However, it may affect the diaphragmatic structure and function, beyond the lungs. Levosimendan is a calcium sensitizer widely used in clinics to improve cardiac contractility in acute heart failure patients. In vitro studies have demonstrated that levosimendan increased force-generating capacity of the diaphragm in chronic obstructive pulmonary disease patients. Thus the aim of this study was to evaluate the effects of levosimendan administration in an animal model of ventilator-induced diaphragmatic dysfunction (VIDD) on muscle contraction and diaphragm muscle cell viability. Methods: Sprague-Dawley rats underwent prolonged MV (5 hours). VIDD+Levo group received a starting bolus of levosimendan immediately after intratracheal intubation and then an intravenous infusion of levosimendan throughout the study. Diaphragms were collected for ex vivo contractility measurement (with electric stimulation), histological analysis and Western blot analysis. Healthy rats were used as the control. Results: Levosimendan treatment maintained an adequate mean arterial pressure during the entire experimental protocol, preserved levels of autophagy-related proteins (LC3BI and LC3BII) and the muscular cell diameter demonstrated by histological analysis. Levosimendan did not affect the diaphragmatic contraction or the levels of proteins involved in the protein degradation (atrogin). Conclusions: Our data suggest that levosimendan preserves muscular cell structure (cross-sectional area) and muscle autophagy after 5 hours of MV in a rat model of VIDD. However, levosimendan did not improve diaphragm contractile efficiency.

2.
J Funct Biomater ; 13(4)2022 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-36412873

RESUMEN

This study evaluated the efficacy of experimental TEGDMA-functionalized dicalcium phosphate dihydrate (T-DCPD) filler-based resin-based composites (RBC) in preventing caries lesions around the restoration margins (secondary caries, SC). Standardized Class-II cavities were made in sound molars with the cervical margin in dentin. Cavities were filled with a commercial resin-modified glass-ionomer cement (RMGIC) or experimental RBCs containing a bisGMA-TEGDMA resin blend and one of the following inorganic fractions: 60 wt.% Ba glass (RBC-0); 40 wt.% Ba glass and 20 wt.% T-DCPD (RBC-20); or 20 wt.% Ba glass and 40 wt.% T-DCPD (RBC-40). An open-system bioreactor produced Streptococcus mutans biofilm-driven SC. Specimens were scanned using micro-CT to evaluate demineralization depths. Scanning electron microscopy and energy-dispersive X-ray spectroscopy characterized the specimen surfaces, and antimicrobial activity, buffering effect, and ion uptake by the biofilms were also evaluated. ANOVA and Tukey's tests were applied at p < 0.05. RBC-0 and RBC-20 showed SC development in dentin, while RBC-40 and RMGIC significantly reduced the lesion depth at the restoration margin (p < 0.0001). Initial enamel demineralization could be observed only around the RBC-0 and RBC-20 restorations. Direct antibiofilm activity can explain SC reduction by RMGIC, whereas a buffering effect on the acidogenicity of biofilm can explain the behavior of RBC-40. Experimental RBC with CaP-releasing functionalized T-DCPD filler could prevent SC with the same efficacy as F-releasing materials.

3.
J Dent ; 127: 104333, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36257513

RESUMEN

OBJECTIVES: The current study aimed to compare the efficacy of two in vitro microbiological models based on open and closed systems designed to obtain secondary caries in an accelerated and reproducible way. METHODS: A conventional resin-based composite (RBC - Majesty ES-2; Kuraray, Japan) and a resin-modified glass-ionomer cement (RMGIC - Ionolux; VOCO, Germany) were used to restore standardized class II cavities (n = 4/tooth, cervical margin in dentin) in 16 human molars. The ability to produce secondary caries with Streptococcus mutans biofilms was tested using either an open-cycle or closed-cycle bioreactor (n = 8 specimens/model). Specimens were scanned before and after the biofilm exposure using micro-CT (Skyscan 1176, 9 µm resolution, 80 kV, 300 mA). Image reconstruction was performed, and demineralization depths (µm) were evaluated at the restoration margins and a distance of 1.0 mm. RESULTS: Dentin demineralization could be observed in all specimens, and enamel demineralization in 50% of the specimens. The open system bioreactor produced lesions with significantly higher overall demineralization depths (p < .001). However, demineralization depths at a 1.0 mm distance from the restoration margins showed no difference between open and closed systems or materials. In the open system, significantly lower demineralization depths were observed in proximity to RMGIC than RBC (p < .001), which was not significantly different in the closed system (p = .382). CONCLUSIONS: Both systems produced in vitro secondary caries in an accelerated way. However, the open-cycle bioreactor system confirmed the caries-protective activity exerted by the RMGIC material in contrast to the RBC, better simulating materials' clinical behavior. CLINICAL SIGNIFICANCE: The possibility of obtaining accelerated and reproducible secondary caries development in vitro is fundamental in testing the behavior of conventional and yet-to-come restorative dental materials. Such systems can provide faster outcomes regarding the performance of dental restorative materials compared to clinical studies, notwithstanding the importance of the latter.


Asunto(s)
Caries Dental , Desmineralización Dental , Humanos , Restauración Dental Permanente/métodos , Desmineralización Dental/microbiología , Susceptibilidad a Caries Dentarias , Resinas Compuestas , Caries Dental/microbiología , Cementos de Ionómero Vítreo
4.
Methods ; 205: 200-209, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35817338

RESUMEN

BACKGROUND: Lesion segmentation is a critical step in medical image analysis, and methods to identify pathology without time-intensive manual labeling of data are of utmost importance during a pandemic and in resource-constrained healthcare settings. Here, we describe a method for fully automated segmentation and quantification of pathological COVID-19 lung tissue on chest Computed Tomography (CT) scans without the need for manually segmented training data. METHODS: We trained a cycle-consistent generative adversarial network (CycleGAN) to convert images of COVID-19 scans into their generated healthy equivalents. Subtraction of the generated healthy images from their corresponding original CT scans yielded maps of pathological tissue, without background lung parenchyma, fissures, airways, or vessels. We then used these maps to construct three-dimensional lesion segmentations. Using a validation dataset, Dice scores were computed for our lesion segmentations and other published segmentation networks using ground truth segmentations reviewed by radiologists. RESULTS: The COVID-to-Healthy generator eliminated high Hounsfield unit (HU) voxels within pulmonary lesions and replaced them with lower HU voxels. The generator did not distort normal anatomy such as vessels, airways, or fissures. The generated healthy images had higher gas content (2.45 ± 0.93 vs 3.01 ± 0.84 L, P < 0.001) and lower tissue density (1.27 ± 0.40 vs 0.73 ± 0.29 Kg, P < 0.001) than their corresponding original COVID-19 images, and they were not significantly different from those of the healthy images (P < 0.001). Using the validation dataset, lesion segmentations scored an average Dice score of 55.9, comparable to other weakly supervised networks that do require manual segmentations. CONCLUSION: Our CycleGAN model successfully segmented pulmonary lesions in mild and severe COVID-19 cases. Our model's performance was comparable to other published models; however, our model is unique in its ability to segment lesions without the need for manual segmentations.


Asunto(s)
COVID-19 , Procesamiento de Imagen Asistido por Computador , COVID-19/diagnóstico por imagen , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Pulmón/diagnóstico por imagen , Tomografía Computarizada por Rayos X/métodos
5.
Am J Physiol Lung Cell Mol Physiol ; 322(6): L866-L872, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35438574

RESUMEN

Imatinib, a tyrosine kinase inhibitor, attenuates pulmonary edema and inflammation in lung injury. However, the physiological effects of this drug and their impact on outcomes are poorly characterized. Using serial computed tomography (CT), we tested the hypothesis that imatinib reduces injury severity and improves survival in ventilated rats. Hydrochloric acid (HCl) was instilled in the trachea (pH 1.5, 2.5 mL/kg) of anesthetized, intubated supine rats. Animals were randomized (n = 17 each group) to receive intraperitoneal imatinib or vehicle immediately prior to HCl. All rats then received mechanical ventilation. CT was performed hourly for 4 h. Images were quantitatively analyzed to assess the progression of radiological abnormalities. Injury severity was confirmed via hourly blood gases, serum biomarkers, bronchoalveolar lavage (BAL), and histopathology. Serial blood drug levels were measured in a subset of rats. Imatinib reduced mortality while delaying functional and radiological injury progression: out of 17 rats per condition, 2 control vs. 8 imatinib-treated rats survived until the end of the experiment (P = 0.02). Imatinib attenuated edema after lung injury (P < 0.05), and survival time in both groups was negatively correlated with increased lung mass (R2 = 0.70) as well as other physiological and CT parameters. Capillary leak (BAL protein concentration) was significantly lower in the treated group (P = 0.04). Peak drug concentration was reached after 70 min, and the drug half-life was 150 min. Imatinib decreased both mortality and lung injury severity in mechanically ventilated rats. Pharmacological inhibition of edema could be used during mechanical ventilation to improve the severity and outcome of lung injury.


Asunto(s)
Lesión Pulmonar , Edema Pulmonar , Animales , Ácido Clorhídrico , Mesilato de Imatinib/farmacología , Pulmón/patología , Lesión Pulmonar/tratamiento farmacológico , Lesión Pulmonar/patología , Edema Pulmonar/patología , Ratas , Respiración Artificial
7.
Crit Care Med ; 49(10): e1015-e1024, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-33938714

RESUMEN

OBJECTIVES: It is not known how lung injury progression during mechanical ventilation modifies pulmonary responses to prone positioning. We compared the effects of prone positioning on regional lung aeration in late versus early stages of lung injury. DESIGN: Prospective, longitudinal imaging study. SETTING: Research imaging facility at The University of Pennsylvania (Philadelphia, PA) and Medical and Surgical ICUs at Massachusetts General Hospital (Boston, MA). SUBJECTS: Anesthetized swine and patients with acute respiratory distress syndrome (acute respiratory distress syndrome). INTERVENTIONS: Lung injury was induced by bronchial hydrochloric acid (3.5 mL/kg) in 10 ventilated Yorkshire pigs and worsened by supine nonprotective ventilation for 24 hours. Whole-lung CT was performed 2 hours after hydrochloric acid (Day 1) in both prone and supine positions and repeated at 24 hours (Day 2). Prone and supine images were registered (superimposed) in pairs to measure the effects of positioning on the aeration of each tissue unit. Two patients with early acute respiratory distress syndrome were compared with two patients with late acute respiratory distress syndrome, using electrical impedance tomography to measure the effects of body position on regional lung mechanics. MEASUREMENTS AND MAIN RESULTS: Gas exchange and respiratory mechanics worsened over 24 hours, indicating lung injury progression. On Day 1, prone positioning reinflated 18.9% ± 5.2% of lung mass in the posterior lung regions. On Day 2, position-associated dorsal reinflation was reduced to 7.3% ± 1.5% (p < 0.05 vs Day 1). Prone positioning decreased aeration in the anterior lungs on both days. Although prone positioning improved posterior lung compliance in the early acute respiratory distress syndrome patients, it had no effect in late acute respiratory distress syndrome subjects. CONCLUSIONS: The effects of prone positioning on lung aeration may depend on the stage of lung injury and duration of prior ventilation; this may limit the clinical efficacy of this treatment if applied late.


Asunto(s)
Lesión Pulmonar/complicaciones , Posición Prona/fisiología , Adulto , Anciano , Boston , Femenino , Humanos , Estudios Longitudinales , Lesión Pulmonar/diagnóstico por imagen , Lesión Pulmonar/fisiopatología , Masculino , Persona de Mediana Edad , Pennsylvania , Respiración con Presión Positiva/métodos , Estudios Prospectivos , Resultado del Tratamiento
8.
Pulm Pharmacol Ther ; 62: 101916, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32205280

RESUMEN

TLQP-21, a peptide encoded by the prohormone VGF, is expressed in neuroendocrine cells and can modulate inflammatory processes. Since TLQP-21 can bind the complement 3a receptor 1 on macrophages, interest has risen in this peptide as a potential drug for the treatment of Acute Respiratory Distress Syndrome (ARDS), whose hospital mortality can reach 35-46%. Since no effective pharmacologic therapies are available, our aim was to exploit the potential of a short analog of TLQP-21(JMV5656) in order to modulate the inflammatory process in ARDS and the progression to pulmonary fibrosis in an experimental model of unilateral acid aspiration in mice. Mice were divided in 2 treatment groups. In the acute protocol, mice received intra-peritoneal injection of either vehicle or 0.6 mg/kg JMV5656 on experimental days 1 and 2, and ARDS was induced on day 3 under deep anesthesia by instillation of HCl (1.5 ml/kg of 0.1 M HCl in 0.9% NaCl) into the right lung; all measurements were performed 24 h later. In the subacute protocol, mice were treated as previously, but treatment with vehicle or JMV5656 was repeated also on day 4 and measurements were made 2 weeks later. Twenty-four hours after acid instillation, the total number of immune cell in the BAL rose sharply due primarily to an increase in the PMN population which increased from 1% up to 58% of total cell numbers. JMV5656 significantly reduced PMN recruitment into the alveolar space, but had no effects on cytokine levels in BAL. Two weeks after acid injury, static compliance of the right lung was significantly higher in the JMV5656-treated group compared to vehicle-treated group. Treatment with JMV5656 also blunted the acid-induced collagen deposition in the right lung. These results suggest that JMV5656 can ameliorate mechanical compliance, and reduce collagen deposition in acid-injured lungs in mice. This effect was likely due to the ability of JMV5656 to inhibit PMN recruitment in the injured lung.


Asunto(s)
Lesión Pulmonar/tratamiento farmacológico , Fibrosis Pulmonar/tratamiento farmacológico , Drogas Sintéticas/farmacología , Animales , Lavado Broncoalveolar , Citocinas , Pulmón/efectos de los fármacos , Lesión Pulmonar/inducido químicamente , Masculino , Ratones , Ratones Endogámicos C57BL , Modelos Animales , Fragmentos de Péptidos , Fibrosis Pulmonar/inducido químicamente , Síndrome de Dificultad Respiratoria
9.
Intensive Care Med Exp ; 7(1): 8, 2019 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-30659381

RESUMEN

BACKGROUND: Ventilator-induced diaphragmatic dysfunction (VIDD) is a common event during mechanical ventilation (MV) leading to rapid muscular atrophy and contractile dysfunction. Recent data show that renin-angiotensin system is involved in diaphragmatic skeletal muscle atrophy after MV. In particular, angiotensin-II can induce marked diaphragm muscle wasting, whereas angiotensin-(1-7) (Ang-(1-7)) could counteract this activity. This study was designed to evaluate the effects of the treatment with Ang-(1-7) in a rat model of VIDD with neuromuscular blocking agent infusion. Moreover, we studied whether the administration of A-779, an antagonist of Ang-(1-7) receptor (Mas), alone or in combination with PD123319, an antagonist of AT2 receptor, could antagonize the effects of Ang-(1-7). METHODS: Sprague-Dawley rats underwent prolonged MV (8 h), while receiving an iv infusion of sterile saline 0.9% (vehicle) or Ang-(1-7) or Ang-(1-7) + A-779 or Ang-(1-7) + A-779 + PD123319. Diaphragms were collected for ex vivo contractility measurement (with electric stimulation), histological analysis, quantitative real-time PCR, and Western blot analysis. RESULTS: MV resulted in a significant reduction of diaphragmatic contractility in all groups of treatment. Ang-(1-7)-treated rats showed higher muscular fibers cross-sectional area and lower atrogin-1 and myogenin mRNA levels, compared to vehicle treatment. Treatment with the antagonists of Mas and Ang-II receptor 2 (AT2R) caused a significant reduction of muscular contractility and an increase of atrogin-1 and MuRF-1 mRNA levels, not affecting the cross-sectional fiber area and myogenin mRNA levels. CONCLUSIONS: Systemic Ang-(1-7) administration during MV exerts a protective role on the muscular fibers of the diaphragm preserving muscular fibers anatomy, and reducing atrophy. The involvement of Mas and AT2R in the mechanism of action of Ang-(1-7) still remains controversial.

10.
Community Ment Health J ; 46(2): 164-76, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19330448

RESUMEN

The purpose of this study was to test a brief instrument to monitor the U.S. public's attitudes about mental illness. A SAMHSA and CDC-led panel reached consensus through an iterative process to identify generic, multidimensional measures to test using a representative sample of 5,251 adults. Exploratory factor analysis revealed two subscales (Negative Stereotypes [alpha = 0.66]; Recovery and Outcomes [alpha = 0.69]). Confirmatory factor analysis supported the convergent validity of the two subscales. Subscale scores differed by sex, race/ethnicity, and experience with mental illness. Inclusion of these brief subscales on existing population-based surveys can help states and others track attitudes about mental illness.


Asunto(s)
Actitud , Trastornos Mentales/psicología , Vigilancia de la Población/métodos , Prejuicio , Adolescente , Adulto , Anciano , Análisis Factorial , Femenino , Humanos , Masculino , Trastornos Mentales/terapia , Servicios de Salud Mental , Persona de Mediana Edad , Encuestas y Cuestionarios , Estados Unidos , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...