Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
1.
Nat Aging ; 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724734

RESUMEN

Excessive amounts of reactive oxygen species (ROS) lead to macromolecular damage and high levels of cell death with consequent pathological sequelae. We hypothesized that switching cell death to a tissue regenerative state could potentially improve the short-term and long-term detrimental effects of ROS-associated acute tissue injury, although the mechanisms regulating oxidative stress-induced cell fate decisions and their manipulation for improving repair are poorly understood. Here, we show that cells exposed to high oxidative stress enter a poly (ADP-ribose) polymerase 1 (PARP1)-mediated regulated cell death, and that blocking PARP1 activation promotes conversion of cell death into senescence (CODIS). We demonstrate that this conversion depends on reducing mitochondrial Ca2+ overload as a consequence of retaining the hexokinase II on mitochondria. In a mouse model of kidney ischemia-reperfusion damage, PARP inhibition reduces necrosis and increases transient senescence at the injury site, alongside improved recovery from damage. Together, these data provide evidence that converting cell death into transient senescence can therapeutically benefit tissue regeneration.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38654098

RESUMEN

Cellular senescence is a state of terminal growth arrest associated with the upregulation of different cell cycle inhibitors, mainly p16 and p21, structural and metabolic alterations, chronic DNA damage responses, and a hypersecretory state known as the senescence-associated secretory phenotype (SASP). The SASP is the major mediator of the paracrine effects of senescent cells in their tissue microenvironment and of various local and systemic biological functions. In this Review, we discuss the composition, dynamics and heterogeneity of the SASP as well as the mechanisms underlying its induction and regulation. We describe the various biological properties of the SASP, its beneficial and detrimental effects in different physiological and pathological settings, and its impact on overall health span. Finally, we discuss the use of the SASP as a biomarker and of SASP inhibitors as senomorphic interventions to treat cancer and other age-related conditions.

3.
STAR Protoc ; 5(1): 102929, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38460134

RESUMEN

Identification and isolation of senescent cells is challenging, rendering their detailed analysis an unmet need. We describe a precise one-step protocol to fluorescently label senescent cells, for flow cytometry and fluorescence microscopy, implementing a fluorophore-conjugated Sudan Black-B analog, GLF16. Also, a micelle-based approach allows identification of senescent cells in vivo and in vitro, enabling live-cell sorting for downstream analyses and live in vivo tracking. Our protocols are applicable to cellular systems, tissues, or animal models where senescence is present. For complete details on the use and execution of this protocol, please refer to Magkouta et al.1.


Asunto(s)
Senescencia Celular , Colorantes Fluorescentes , Animales , Separación Celular , Citometría de Flujo , Modelos Animales
4.
NPJ Aging ; 10(1): 11, 2024 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-38310117
5.
Geroscience ; 46(2): 1499-1514, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37644339

RESUMEN

Accumulation of senescent cells accelerates aging and age-related diseases, whereas preventing this accumulation extends the lifespan in mice. A characteristic of senescent cells is increased staining with ß-galactosidase (ß-gal) ex vivo. Here, we describe a progressive accumulation of ß-gal staining in the model organism C. elegans during aging. We show that distinct pharmacological and genetic interventions targeting the mitochondria and the mTORC1 to the nuclear core complex axis, the non-canonical apoptotic, and lysosomal-autophagy pathways slow the age-dependent accumulation of ß-gal. We identify a novel gene, rege-1/Regnase-1/ZC3H12A/MCPIP1, modulating ß-gal staining via the transcription factor ets-4/SPDEF. We demonstrate that knocking down Regnase-1 in human cell culture prevents senescence-associated ß-gal accumulation. Our data provide a screening pipeline to identify genes and drugs modulating senescence-associated lysosomal phenotypes.


Asunto(s)
Senescencia Celular , Endorribonucleasas , Humanos , Ratones , Animales , Senescencia Celular/genética , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , Caenorhabditis elegans/genética , Biomarcadores/metabolismo , Factores de Transcripción/metabolismo , Lisosomas/metabolismo
6.
Mol Cell ; 83(19): 3558-3573.e7, 2023 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-37802028

RESUMEN

Cellular senescence is a stress-response mechanism implicated in various physiological processes, diseases, and aging. Current detection approaches have partially addressed the issue of senescent cell identification in clinical specimens. Effective methodologies enabling precise isolation or live tracking of senescent cells are still lacking. In-depth analysis of truly senescent cells is, therefore, an extremely challenging task. We report (1) the synthesis and validation of a fluorophore-conjugated, Sudan Black-B analog (GLF16), suitable for in vivo and in vitro analysis of senescence by fluorescence microscopy and flow cytometry and (2) the development and application of a GLF16-carrying micelle vector facilitating GLF16 uptake by living senescent cells in vivo and in vitro. The compound and the applied methodology render isolation of senescent cells an easy, rapid, and precise process. Straightforward nanocarrier-mediated GLF16 delivery in live senescent cells comprises a unique tool for characterization of senescence at an unprecedented depth.


Asunto(s)
Senescencia Celular , Indicadores y Reactivos , Citometría de Flujo
7.
Aging Cell ; 22(9): e13893, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37547972

RESUMEN

Cellular senescence constitutes a generally irreversible proliferation barrier, accompanied by macromolecular damage and metabolic rewiring. Several senescence types have been identified based on the initiating stimulus, such as replicative (RS), stress-induced (SIS) and oncogene-induced senescence (OIS). These senescence subtypes are heterogeneous and often develop subset-specific phenotypes. Reduced protein synthesis is considered a senescence hallmark, but whether this trait pertains to various senescence subtypes and if distinct molecular mechanisms are involved remain largely unknown. Here, we analyze large published or experimentally produced RNA-seq and Ribo-seq datasets to determine whether major translation-regulating entities such as ribosome stalling, the presence of uORFs/dORFs and IRES elements may differentially contribute to translation deficiency in senescence subsets. We show that translation-regulating mechanisms may not be directly relevant to RS, however uORFs are significantly enriched in SIS. Interestingly, ribosome stalling, uORF/dORF patterns and IRES elements comprise predominant mechanisms upon OIS, strongly correlating with Notch pathway activation. Our study provides for the first time evidence that major translation dysregulation mechanisms/patterns occur during cellular senescence, but at different rates depending on the stimulus type. The degree at which those mechanisms accumulate directly correlates with translation deficiency levels. Our thorough analysis contributes to elucidating crucial and so far unknown differences in the translation machinery between senescence subsets.


Asunto(s)
Senescencia Celular , Ribosomas , Senescencia Celular/genética , Ribosomas/genética , Ribosomas/metabolismo , Biosíntesis de Proteínas
8.
JACC CardioOncol ; 5(3): 298-315, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37397084

RESUMEN

Background: Doxorubicin is an essential cancer treatment, but its usefulness is hampered by the occurrence of cardiotoxicity. Nevertheless, the pathophysiology underlying doxorubicin-induced cardiotoxicity and the respective molecular mechanisms are poorly understood. Recent studies have suggested involvement of cellular senescence. Objectives: The aims of this study were to establish whether senescence is present in patients with doxorubicin-induced cardiotoxicity and to investigate if this could be used as a potential treatment target. Methods: Biopsies from the left ventricles of patients with severe doxorubicin-induced cardiotoxicity were compared with control samples. Additionally, senescence-associated mechanisms were characterized in 3-dimensional dynamic engineered heart tissues (dyn-EHTs) and human pluripotent stem cell-derived cardiomyocytes. These were exposed to multiple, clinically relevant doses of doxorubicin to recapitulate patient treatment regimens. To prevent senescence, dyn-EHTs were cotreated with the senomorphic drugs 5-aminoimidazole-4-carboxamide ribonucleotide and resveratrol. Results: Senescence-related markers were significantly up-regulated in the left ventricles of patients with doxorubicin-induced cardiotoxicity. Treatment of dyn-EHTs resulted in up-regulation of similar senescence markers as seen in the patients, accompanied by tissue dilatation, decreased force generation, and increased troponin release. Treatment with senomorphic drugs led to decreased expression of senescence-associated markers, but this was not accompanied by improved function. Conclusions: Senescence was observed in the hearts of patients with severe doxorubicin-induced cardiotoxicity, and this phenotype can be modeled in vitro by exposing dyn-EHTs to repeated clinically relevant doses of doxorubicin. The senomorphic drugs 5-aminoimidazole-4-carboxamide ribonucleotide and resveratrol prevent senescence but do not result in functional improvements. These findings suggest that preventing senescence by using a senomorphic during doxorubicin administration might not prevent cardiotoxicity.

9.
NPJ Aging ; 9(1): 3, 2023 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-36849522

RESUMEN

Regular endurance exercise training is an effective intervention for the maintenance of metabolic health and the prevention of many age-associated chronic diseases. Several metabolic and inflammatory factors are involved in the health-promoting effects of exercise training, but regulatory mechanisms remain poorly understood. Cellular senescence-a state of irreversible growth arrest-is considered a basic mechanism of aging. Senescent cells accumulate over time and promote a variety of age-related pathologies from neurodegenerative disorders to cancer. Whether long-term intensive exercise training affect the accumulation of age-associated cellular senescence is still unclear. Here, we show that the classical senescence markers p16 and IL-6 were markedly higher in the colon mucosa of middle-aged and older overweight adults than in young sedentary individuals, but this upregulation was significantly blunted in age-matched endurance runners. Interestingly, we observe a linear correlation between the level of p16 and the triglycerides to HDL ratio, a marker of colon adenoma risk and cardiometabolic dysfunction. Our data suggest that chronic high-volume high-intensity endurance exercise can play a role in preventing the accumulation of senescent cells in cancer-prone tissues like colon mucosa with age. Future studies are warranted to elucidate if other tissues are also affected, and what are the molecular and cellular mechanisms that mediate the senopreventative effects of different forms of exercise training.

10.
Biomed J ; 46(3): 100585, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36801257

RESUMEN

Evidence supports the notion that metabolic pathways are major regulators of organismal aging, and that metabolic perturbations can extend health- and lifespan. For this reason, dietary interventions and compounds perturbing metabolism are currently explored as anti-aging strategies. A common target for metabolic interventions delaying aging is cellular senescence, a state of stable growth arrest that is accompanied by various structural and functional changes including the activation of a pro-inflammatory secretome. Here, we summarize the current knowledge on the molecular and cellular events associated with carbohydrate, lipid and protein metabolism, and define how macronutrients can regulate induction or prevention of cellular senescence. We discuss how various dietary interventions can achieve prevention of disease and extension of healthy longevity by partially modulating senescence-associated phenotypes. We also emphasize the importance of developing personalized nutritional interventions that take into account the current health and age status of the individual.


Asunto(s)
Senescencia Celular , Longevidad , Senescencia Celular/genética , Nutrientes
11.
FEBS J ; 290(5): 1340-1347, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-34908245

RESUMEN

Dietary choices have a profound impact on the aging process. In addition to the total amount of energy intake, macronutrient composition influences both health and lifespan. However, the exact mechanisms by which dietary macronutrients influence onset and progression of age-associated features remain poorly understood. Cellular senescence is a state of stable growth arrest characterized by the secretion of numerous bioactive molecules with pro-inflammatory properties. Accumulation of senescent cells is considered one of the basic mechanisms of aging and an important contributor to chronic inflammation and tissue degeneration. Whether dietary macronutrients affect the accumulation and the phenotype of senescent cells with age is still unknown. Here, we show that feeding on diets with varying ratios of dietary macronutrients for 3 months has a significant effect on different senescence-associated markers in the mouse liver. High protein intake is associated with higher expression levels of the two classical senescence-associated growth arrest genes, p21 and p16. Furthermore, the expression of many pro-inflammatory secretory markers was increased in diets enriched in protein and further enhanced by increases in fat content. These results provide preliminary evidence that dietary macronutrients have a significant influence on senescence markers and merit further investigation.


Asunto(s)
Envejecimiento , Senescencia Celular , Animales , Ratones , Envejecimiento/genética , Envejecimiento/metabolismo , Senescencia Celular/genética , Fenotipo , Proteínas en la Dieta/farmacología , Hígado
12.
Physiol Rev ; 103(1): 609-647, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36049114

RESUMEN

Cardiovascular diseases (CVDs) constitute the prime cause of global mortality, with an immense impact on patient quality of life and disability. Clinical evidence has revealed a strong connection between cellular senescence and worse cardiac outcomes in the majority of CVDs concerning both ischemic and nonischemic cardiomyopathies. Cellular senescence is characterized by cell cycle arrest accompanied by alterations in several metabolic pathways, resulting in morphological and functional changes. Metabolic rewiring of senescent cells results in marked paracrine activity, through a unique secretome, often exerting deleterious effects on neighboring cells. Here, we recapitulate the hallmarks and key molecular pathways involved in cellular senescence in the cardiac context and summarize the different roles of senescence in the majority of CVDs. In the last few years, the possibility of eliminating senescent cells in various pathological conditions has been increasingly explored, giving rise to the field of senotherapeutics. Therefore, we additionally attempt to clarify the current state of this field with a focus on cardiac senescence and discuss the potential of implementing senolytics as a treatment option in heart disease.


Asunto(s)
Enfermedades Cardiovasculares , Humanos , Envejecimiento/fisiología , Calidad de Vida , Senescencia Celular/fisiología
13.
Nat Commun ; 13(1): 7923, 2022 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-36564381

RESUMEN

Human melanocytic nevi (moles) result from a brief period of clonal expansion of melanocytes. As a cellular defensive mechanism against oncogene-induced hyperplasia, nevus-resident melanocytes enter a senescent state of stable cell cycle arrest. Senescent melanocytes can persist for months in mice and years in humans with a risk to escape the senescent state and progress to melanoma. The mechanisms providing prolonged survival of senescent melanocytes remain poorly understood. Here, we show that senescent melanocytes in culture and in nevi express high level of the anti-apoptotic BCL-2 family member BCL-W but remain insensitive to the pan-BCL-2 inhibitor ABT-263. We demonstrate that resistance to ABT-263 is driven by mTOR-mediated enhanced translation of another anti-apoptotic member, MCL-1. Strikingly, the combination of ABT-263 and MCL-1 inhibitors results in synthetic lethality to senescent melanocytes, and its topical application sufficient to eliminate nevi in male mice. These data highlight the important role of redundant anti-apoptotic mechanisms for the survival advantage of senescent melanocytes, and the proof-of-concept for a non-invasive combination therapy for nevi removal.


Asunto(s)
Nevo Pigmentado , Nevo , Neoplasias Cutáneas , Masculino , Humanos , Animales , Ratones , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/genética , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Melanocitos/metabolismo , Nevo/metabolismo , Neoplasias Cutáneas/metabolismo
14.
Transl Lung Cancer Res ; 11(8): 1526-1539, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36090630

RESUMEN

Background: Cure and long-term survival for non-small cell lung cancer (NSCLC) remains hard to achieve. Cellular senescence, an emerging hallmark of cancer, is considered as an endogenous tumor suppressor mechanism. However, senescent cancer cells can paradoxically affect the surrounding tumor microenvironment (TME), ultimately leading to cancer relapse and metastasis. As such, the role of cellular senescence in cancer is highly controversial. Methods: In 155 formalin-fixed paraffin-embedded (FFPE) samples from surgically resected NSCLC patients with pathological tumor-node-metastasis (pTNM) stages I-IV (8th edition), cellular senescence was assessed using a combination of four immunohistochemical senescence markers, i.e., lipofuscin, p16INK4a, p21WAF1/Cip1 and Ki67, and correlated to clinicopathological parameters and outcomes, including overall survival (OS) and disease-free survival (DFS). Results: A tumoral senescence signature (SS) was present in 48 out of 155 NSCLC patients, but did not correlate to any clinicopathological parameter, except for p53 mutation status. In a histologically homogenous patient cohort of 100 patients who fulfilled the following criteria: (I) one type of histology, i.e., adenocarcinoma, (II) without known epidermal growth factor receptor (EGFR) mutation, (III) curative (R0) resection and (IV) no neoadjuvant systemic therapy or radiotherapy, the median OS and DFS for patients with a tumoral SS (n=30, 30.0%) compared to patients without a tumoral SS (n=70, 70.0%) was 53 versus 141 months (P=0.005) and 45 versus 55 months (P=0.25), respectively. In multiple Cox proportional hazards (Cox PH) model analysis correcting for age, pTNM stage I-III and adjuvant therapy, a tumoral SS remained a significant prognostic factor for OS (HR =2.03; P=0.014). Conclusions: The presence of a tumoral SS particularly based on high p16INK4a expression significantly affects OS in NSCLC adenocarcinoma. In this light, adjuvant senolytic therapy could be an interesting strategy for NSCLC patients harboring a tumoral SS, ultimately to improve survival of these patients.

15.
Cells ; 11(16)2022 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-36010584

RESUMEN

Cellular senescence is a hallmark of aging and a promising target for therapeutic approaches. The identification of senescent cells requires multiple biomarkers and complex experimental procedures, resulting in increased variability and reduced sensitivity. Here, we propose a simple and broadly applicable imaging flow cytometry (IFC) method. This method is based on measuring autofluorescence and morphological parameters and on applying recent artificial intelligence (AI) and machine learning (ML) tools. We show that the results of this method are superior to those obtained measuring the classical senescence marker, senescence-associated beta-galactosidase (SA-ß-Gal). We provide evidence that this method has the potential for diagnostic or prognostic applications as it was able to detect senescence in cardiac pericytes isolated from the hearts of patients affected by end-stage heart failure. We additionally demonstrate that it can be used to quantify senescence "in vivo" and can be used to evaluate the effects of senolytic compounds. We conclude that this method can be used as a simple and fast senescence assay independently of the origin of the cells and the procedure to induce senescence.


Asunto(s)
Inteligencia Artificial , Senescencia Celular , Envejecimiento , Biomarcadores , Citometría de Flujo/métodos , Humanos
16.
Nat Rev Clin Oncol ; 19(10): 619-636, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36045302

RESUMEN

Cellular senescence is a state of stable, terminal cell cycle arrest associated with various macromolecular changes and a hypersecretory, pro-inflammatory phenotype. Entry of cells into senescence can act as a barrier to tumorigenesis and, thus, could in principle constitute a desired outcome for any anticancer therapy. Paradoxically, studies published in the past decade have demonstrated that, in certain conditions and contexts, malignant and non-malignant cells with lastingly persistent senescence can acquire pro-tumorigenic properties. In this Review, we first discuss the major mechanisms involved in the antitumorigenic functions of senescent cells and then consider the cell-intrinsic and cell-extrinsic factors that participate in their switch towards a tumour-promoting role, providing an overview of major translational and emerging clinical findings. Finally, we comprehensively describe various senolytic and senomorphic therapies and their potential to benefit patients with cancer.


Asunto(s)
Neoplasias , Senoterapéuticos , Carcinogénesis , Puntos de Control del Ciclo Celular , Senescencia Celular/genética , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/terapia
17.
Curr Biol ; 32(10): R448-R452, 2022 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-35609537

RESUMEN

Cellular senescence defines a state of stable and generally irreversible proliferative arrest associated with various morphological, structural and functional changes (Figure 1), including enhanced expression and secretion of pro-inflammatory and tissue-remodelling mediators. This state is crucial in tissue physiology and pathology and arises as a response to potentially damaging stress signals. Whether the activation of a senescence state provides benefits or detriments for tissue function and homeostasis is strictly dependent on the context. Cell senescence acts as a potent tumour-suppressive mechanism limiting the proliferation of cells at risk of malignant transformation and supports the repair of acute tissue damage, but also represents a key driver of ageing and age-related diseases.


Asunto(s)
Senescencia Celular , Homeostasis
18.
EMBO J ; 41(6): e108946, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-34985783

RESUMEN

Cellular senescence is a state of stable growth arrest and a desired outcome of tumor suppressive interventions. Treatment with many anti-cancer drugs can cause premature senescence of non-malignant cells. These therapy-induced senescent cells can have pro-tumorigenic and pro-disease functions via activation of an inflammatory secretory phenotype (SASP). Inhibitors of cyclin-dependent kinases 4/6 (CDK4/6i) have recently proven to restrain tumor growth by activating a senescence-like program in cancer cells. However, the physiological consequence of exposing the whole organism to pharmacological CDK4/6i remains poorly characterized. Here, we show that exposure to CDK4/6i induces non-malignant cells to enter a premature state of senescence dependent on p53. We observe in mice and breast cancer patients that the CDK4/6i-induced senescent program activates only a partial SASP enriched in p53 targets but lacking pro-inflammatory and NF-κB-driven components. We find that CDK4/6i-induced senescent cells do not acquire pro-tumorigenic and detrimental properties but retain the ability to promote paracrine senescence and undergo clearance. Our results demonstrate that SASP composition is exquisitely stress-dependent and a predictor for the biological functions of different senescence subsets.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Quinasa 6 Dependiente de la Ciclina/antagonistas & inhibidores , Animales , Antineoplásicos/farmacología , Senescencia Celular/fisiología , Quinasa 4 Dependiente de la Ciclina/genética , Femenino , Humanos , Ratones , FN-kappa B/genética , FN-kappa B/metabolismo , Proteína p53 Supresora de Tumor/genética
19.
Cancer Lett ; 525: 67-75, 2022 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-34728311

RESUMEN

Genotoxic agents are widely used anti-cancer therapies because of their ability to interfere with highly proliferative cells. An important outcome of these interventions is the induction of a state of permanent arrest also known as cellular senescence. However, senescent cancer cells are characterized by genomic instability and are at risk of escaping the growth arrest to eventually facilitate cancer relapse. The tumor necrosis factor related apoptosis inducing ligand (TRAIL) signals extrinsic apoptosis via Death Receptors (DR) 4 and 5, while Decoy Receptors (DcR) 1 and 2, and Osteoprotegerin (OPG) are homologous to death receptors but incapable of transducing an apoptotic signal. The use of recombinant TRAIL as an anti-cancer strategy in combination with chemotherapy is currently in development, and a major question remains whether senescent cancer cells respond to TRAIL. Here, we show variable sensitivity of cancer cells to TRAIL after senescence induction, and upregulation of both pro-apoptotic and anti-apoptotic receptors in therapy-induced senescent cancer cells. A DR5-selective TRAIL variant (DHER), unable to bind to DcR1 or OPG, was more effective in inducing apoptosis of senescent cancer cells compared to wild-type TRAIL. Importantly, no apoptosis induction was observed in non-cancerous cells, even at the highest concentrations tested. Our results suggest that targeting DR5 can serve as a novel therapeutic strategy for the elimination of therapy-induced senescent cancer cells.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Osteoprotegerina/genética , Neoplasias Ováricas/tratamiento farmacológico , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/genética , Ligando Inductor de Apoptosis Relacionado con TNF/genética , Apoptosis/genética , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Senescencia Celular/efectos de los fármacos , Senescencia Celular/genética , Doxorrubicina/farmacología , Femenino , Proteínas Ligadas a GPI/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Inestabilidad Genómica/efectos de los fármacos , Humanos , Células MCF-7 , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Miembro 10c de Receptores del Factor de Necrosis Tumoral/genética , Transducción de Señal/efectos de los fármacos , Receptores Señuelo del Factor de Necrosis Tumoral/genética
20.
Semin Cancer Biol ; 81: 5-13, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-33775830

RESUMEN

Therapy-induced cellular senescence is a state of stable growth arrest induced by common cancer treatments such as chemotherapy and radiation. In an oncogenic context, therapy-induced senescence can have different consequences. By blocking cellular proliferation and by facilitating immune cell infiltration, it functions as tumor suppressive mechanism. By fueling the proliferation of bystander cells and facilitating metastasis, it acts as a tumor promoting factor. This dual role is mainly attributed to the differential expression and secretion of a set of pro-inflammatory cytokines and tissue remodeling factors, collectively known as the Senescence-Associated Secretory Phenotype (SASP). Here, we describe cell-autonomous and non-cell-autonomous mechanisms that senescent cells activate in response to chemotherapy and radiation leading to tumor suppression and tumor promotion. We present the current state of knowledge on the stimuli that affect the activation of these opposing mechanisms and the effect of senescent cells on their micro-environment eg. by regulating the functions of immune cells in tumor clearance as well as strategies to eliminate senescent tumor cells before exerting their deleterious side-effects.


Asunto(s)
Neoplasias , Carcinogénesis , Proliferación Celular , Senescencia Celular/genética , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Oncogenes , Microambiente Tumoral/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...