Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Physiol Genomics ; 56(5): 397-408, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38497119

RESUMEN

Feed efficiency is a trait of interest in pigs as it contributes to lowering the ecological and economical costs of pig production. A divergent genetic selection experiment from a Large White pig population was performed for 10 generations, leading to pig lines with relatively low- (LRFI) and high- (HRFI) residual feed intake (RFI). Feeding behavior and metabolic differences have been previously reported between the two lines. We hypothesized that part of these differences could be related to differential sensing and absorption of nutrients in the proximal intestine. We investigated the duodenum transcriptome and DNA methylation profiles comparing overnight fasting with ad libitum feeding in LRFI and HRFI pigs (n = 24). We identified 1,106 differentially expressed genes between the two lines, notably affecting pathways of the transmembrane transport activity and related to mitosis or chromosome separation. The LRFI line showed a greater transcriptomic response to feed intake than the HRFI line. Feed intake affected genes from both anabolic and catabolic pathways in the pig duodenum, such as rRNA production and autophagy. Several nutrient transporter and tight junction genes were differentially expressed between lines and/or by short-term feed intake. We also identified 409 differentially methylated regions in the duodenum mucosa between the two lines, while this epigenetic mark was less affected by feeding. Our findings highlighted that the genetic selection for feed efficiency in pigs changed the transcriptome profiles of the duodenum, and notably its response to feed intake, suggesting key roles for this proximal gut segment in mechanisms underlying feed efficiency.NEW & NOTEWORTHY The duodenum is a key organ for the hunger/satiety loop and nutrient sensing. We investigated how the duodenum transcriptome and DNA methylation profiles are affected by feed intakes in pigs. We observed thousands of changes in gene expression levels between overnight-fasted and fed pigs in high-feed efficiency pig lines, but almost none in the related low-feed efficiency pig line.


Asunto(s)
Metilación de ADN , Transcriptoma , Porcinos/genética , Animales , Transcriptoma/genética , Metilación de ADN/genética , Ingestión de Alimentos/genética , Perfilación de la Expresión Génica , Duodeno , Alimentación Animal
2.
Front Cell Dev Biol ; 12: 1348036, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38500688

RESUMEN

Genomic imprinting is an epigenetically-regulated process of central importance in mammalian development and evolution. It involves multiple levels of regulation, with spatio-temporal heterogeneity, leading to the context-dependent and parent-of-origin specific expression of a small fraction of the genome. Genomic imprinting studies have therefore been essential to increase basic knowledge in functional genomics, evolution biology and developmental biology, as well as with regard to potential clinical and agrigenomic perspectives. Here we offer an overview on the contribution of livestock research, which features attractive resources in several respects, for better understanding genomic imprinting and its functional impacts. Given the related broad implications and complexity, we promote the use of such resources for studying genomic imprinting in a holistic and integrative view. We hope this mini-review will draw attention to the relevance of livestock genomic imprinting studies and stimulate research in this area.

3.
Sci Rep ; 14(1): 1694, 2024 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-38242932

RESUMEN

Genomic imprinting represents an original model of epigenetic regulation resulting in a parent-of-origin expression. Despite the critical role of imprinted genes in mammalian growth, metabolism and neuronal function, there is no molecular tool specifically targeting them for a systematic evaluation. We show here that enzymatic methyl-seq consistently outperforms the bisulfite-based standard in capturing 165 candidate regions for genomic imprinting in the pig. This highlights the potential for a turnkey, fully customizable and reliable capture tool of genomic regions regulated by cytosine methylation in any population of interest. For the field of genomic imprinting, it opens up the possibility of detecting multilocus imprinting variations across the genome, with implications for basic research, agrigenomics and clinical practice.


Asunto(s)
Metilación de ADN , Impresión Genómica , Animales , Porcinos , Epigénesis Genética , Expresión Génica , Genoma , Mamíferos/genética
5.
BMC Res Notes ; 15(1): 282, 2022 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-35986355

RESUMEN

OBJECTIVE: Causal mutations for major genes that underlie a broad range of morphological traits are often located within exons of genes that then affect protein functions. Non-model organism genetic studies are not easy to perform due to the lack of genome-wide molecular tools such as SNP genotyping array. Genotyping-By-Sequencing (GBS) methods offer an alternative. Consequently, we used this approach that is focused on the exome to target and identify major genes in rabbit populations. Data description We used a heterologous enrichment method before sequencing, allowing us to capture the rabbit exome using the marketed human panel since mammal protein coding genes are well conserved across the phylogenic tree of species. This targeted strategy was performed on 52 French rabbits from 5 different French strains (Californian, New-Zealand, Castor, Chinchilla and Laghmere). We generated 3.4 billion sequencing reads and approximately 29-140 million of reads per DNA sample. The expected exome coverage per sample ranged between 118 and 566X. The present dataset could be useful for the scientific community working on rabbit species in order to (i) improve the annotation of the rabbit reference genome Oryctolagus cuniculus (OryCun2.0), (ii) enrich the characterization of polymorphisms segregating in rabbits and (iii) evaluate the genetic biodiversity in different rabbit strains. Raw sequences were deposited in the European Nucleotide Archive (ENA) at the European Molecular Biology Laboratory- European Bioinformatics Institute (EMBL-EBI) data portal under bioproject accession number PRJEB37917.


Asunto(s)
Exoma , Polimorfismo de Nucleótido Simple , Animales , Exoma/genética , Exones , Genómica , Técnicas de Genotipaje , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Mamíferos/genética , Conejos
6.
Biochim Biophys Acta Gene Regul Mech ; 1865(4): 194815, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35513260

RESUMEN

Circular intronic RNAs (ciRNAs) are still unexplored regarding mechanisms for their emergence. We considered the ATXN2L intron lariat-derived circular RNA (ciRNA-ATXN2L) as an opportunity to conduct a cross-species examination of ciRNA genesis. To this end, we investigated 207 datasets from 4 tissues and from 13 mammalian species. While in eight species, ciRNA-ATXN2L was never detected, in pigs and rabbits, ciRNA-ATXN2L was expressed in all tissues and sometimes at very high levels. Bovine tissues were an intermediate case and in macaques and cats, only ciRNA-ATXN2L traces were detected. The pattern of ciRNA-ATXN2L restricted to only five species is not related to a particular evolution of intronic sequences. To empower our analysis, we considered 221 additional introns including 80 introns where a lariat-derived ciRNA was previously described. The primary driver of micro-ciRNA genesis (< 155 nt as ciRNA-ATXN2L) appears to be the absence of a canonical "A" (i.e. a "tnA" located in the usual branching region) to build the lariat around this adenosine. The balance between available "non canonical-A" (no ciRNA genesis) and "non-A" (ciRNA genesis) for use as a branch point to build the lariat could modify the expression level of ciRNA-ATXN2L. In addition, the rare localization of the 2'-5' bond in an open RNA secondary structure could also negatively affect the lifetime of ciRNAs (macaque ciRNA-ATXN2L). Our analyses suggest that ciRNA-ATXN2L is likely a functionless splice remnant. This study provides a better understanding of the ciRNAs origin, especially drivers for micro ciRNA genesis.


Asunto(s)
Empalme del ARN , ARN Circular , Animales , Bovinos , Intrones/genética , Mamíferos/genética , Mamíferos/metabolismo , ARN/metabolismo , ARN Circular/genética , Conejos , Porcinos
7.
Front Genet ; 13: 838534, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35368671

RESUMEN

Genomic imprinting represents a noteworthy inheritance mechanism leading to allele-specific regulations dependent of the parental origin. Imprinted loci are especially involved in essential mammalian functions related to growth, development and behavior. In this mini-review, we first offer a summary of current representations associated with genomic imprinting through key results of the three last decades. We then outline new perspectives allowed by the spread of new omics technologies tackling various interacting levels of imprinting regulations, including genomics, transcriptomics and epigenomics. We finally discuss the expected contribution of new omics data to unresolved big questions in the field.

8.
Genomics ; 114(3): 110361, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35378242

RESUMEN

Deciphering the molecular architecture of coat coloration for a better understanding of the biological mechanisms underlying pigmentation still remains a challenge. We took advantage of a rabbit French experimental population in which both a pattern and a gradient of coloration from white to brown segregated within the himalayan phenotype. The whole experimental design was genotyped using the high density Affymetrix® AxiomOrcun™ SNP Array and phenotyped into 6 different groups ordered from the lighter to the darker. Genome-wide association analyses pinpointed an oligogenic determinism, under recessive and additive inheritance, involving genes already known in melanogenesis (ASIP, KIT, MC1R, TYR), and likely processed pseudogenes linked to ribosomal function, RPS20 and RPS14. We also identified (i) gene-gene interactions through ASIP:MC1R affecting light cream/beige phenotypes while KIT:RPS responsible of dark chocolate/brown colors and (ii) a genome-wide epistatic network involving several others coloration genes such as POT1 or HPS5. Finally, we determined the recessive inheritance of the English spotting phenotype likely involving a copy number variation affecting at least the end of the coding sequence of the KIT gene. Our analyses of coloration as a continuous trait allowed us to go beyond much of the established knowledge through the detection of additional genes and gene-gene interactions that may contribute to the molecular architecture of the coloration phenotype.


Asunto(s)
Variaciones en el Número de Copia de ADN , Estudio de Asociación del Genoma Completo , Animales , Conejos , Proteína de Señalización Agouti/genética , Pigmentación/genética , Fenotipo , Extremidades
9.
Cells ; 9(8)2020 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-32751504

RESUMEN

The sequencing of total RNA depleted for ribosomal sequences remains the method of choice for the study of circRNAs. Our objective was to characterize non-canonical circRNAs, namely not originating from back splicing and circRNA produced by non-coding genes. To this end, we analyzed a dataset from porcine testis known to contain about 100 intron-derived circRNAs. Labelling reads containing a circular junction and originating from back splicing provided information on the very small contribution of long non-coding genes to the production of canonical circRNAs. Analyses of the other reads revealed two origins for non-canonical circRNAs: (1) Intronic sequences for lariat-derived intronic circRNAs and intron circles, (2) Mono-exonic genes (mostly non-coding) for either a new type of circRNA (including only part of the exon: sub-exonic circRNAs) or, even more rarely, mono-exonic canonical circRNAs. The most complex set of sub-exonic circRNAs was produced by RNase_MRP (ribozyme RNA). We specifically investigated the intronic circRNA of ATXN2L, which is probably an independently transcribed sisRNA (stable intronic sequence RNA). We may be witnessing the emergence of a new non-coding gene in the porcine genome. Our results are evidence that most non-canonical circRNAs originate from non-coding sequences.


Asunto(s)
Secuencia de Bases/genética , ARN Circular/genética , Porcinos/genética , Testículo/metabolismo , Animales , Endorribonucleasas/genética , Exones , Intrones , Masculino , Proteínas del Tejido Nervioso/genética , Seudogenes , Empalme del ARN , ARN Circular/metabolismo , RNA-Seq
10.
Front Genet ; 10: 1058, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31737041

RESUMEN

Evolutionary biologists studying wild species have demonstrated that genetic and non-genetic sources of information are inherited across generations and are therefore responsible for phenotypic resemblance between relatives. Although it has been postulated that non-genetic sources of inheritance are important in natural selection, they are not taken into account for livestock selection that is based on genetic inheritance only. According to the natural selection theory, the contribution of non-genetic inheritance may be significant for the transmission of characters. If this theory is confirmed in livestock, not considering non-genetic means of transmission in selection schemes might prevent achieving maximum progress in the livestock populations being selected. The present discussion paper reviews the different mechanisms of genetic and non-genetic inheritance reported in the literature as occurring in livestock species. Non-genetic sources of inheritance comprise information transmitted via physical means, such as epigenetic and microbiota inheritance, and those transmitted via learning mechanisms: behavioral, cultural and ecological inheritance. In the first part of this paper we review the evidence that suggests that both genetic and non-genetic information contribute to inheritance in livestock (i.e. transmitted from one generation to the next and causing phenotypic differences between individuals) and discuss how the environment may influence non-genetic inherited factors. Then, in a second step, we consider methods for favoring the transmission of non-genetic inherited factors by estimating and selecting animals on their extended transmissible value and/or introducing favorable non-genetic factors via the animals' environment.

11.
Genes (Basel) ; 9(9)2018 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-30142960

RESUMEN

Coat color dilution corresponds to a specific pigmentation phenotype that leads to a dilution of wild type pigments. It affects both eumelanin and pheomelanin containing melanosomes. The mode of inheritance of the dilution phenotype is autosomal recessive. Candidate gene approaches focused on the melanophilin (MLPH) gene highlighted two variants associated with the dilution phenotype in rabbits: The c.111-5C>A variant that is located in an acceptor splice site or the c.585delG variant, a frameshift mutation. On the transcript level, the skipping of two exons has been reported as the molecular mechanism responsible for the coat color dilution. To clarify, which of the two variants represents the causal variant, (i) we analyzed their allelic segregation by genotyping Castor and Chinchilla populations, and (ii) we evaluated their functional effects on the stability of MLPH transcripts in skin samples of animals with diluted or wild type coat color. Firstly, we showed that the c.585delG variant showed perfect association with the dilution phenotype in contrast to the intronic c.111-5C>A variant. Secondly, we identified three different MLPH isoforms including the wild type isoform, the exon-skipping isoform and a retained intron isoform. Thirdly, we observed a drastic and significant decrease of MLPH transcript levels in rabbits with a coat color dilution (p-values ranging from 10-03 to 10-06). Together, our results bring new insights into the coat color dilution trait.

12.
Mol Biol Evol ; 34(7): 1722-1729, 2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28379502

RESUMEN

The composition and structure of fleece variation observed in mammals is a consequence of a strong selective pressure for fiber production after domestication. In sheep, fleece variation discriminates ancestral species carrying a long and hairy fleece from modern domestic sheep (Ovis aries) owning a short and woolly fleece. Here, we report that the "woolly" allele results from the insertion of an antisense EIF2S2 retrogene (called asEIF2S2) into the 3' UTR of the IRF2BP2 gene leading to an abnormal IRF2BP2 transcript. We provide evidence that this chimeric IRF2BP2/asEIF2S2 messenger 1) targets the genuine sense EIF2S2 RNA and 2) creates a long endogenous double-stranded RNA which alters the expression of both EIF2S2 and IRF2BP2 mRNA. This represents a unique example of a phenotype arising via a RNA-RNA hybrid, itself generated through a retroposition mechanism. Our results bring new insights on the sheep population history thanks to the identification of the molecular origin of an evolutionary phenotypic variation.


Asunto(s)
Oveja Doméstica/genética , Ovinos/genética , Animales , Evolución Biológica , Proteínas Portadoras/genética , ADN Antiguo , Variación Genética/genética , Genoma , Estudio de Asociación del Genoma Completo/métodos , Mutación , Fenotipo , Factores de Transcripción/genética , Lana
13.
J Med Genet ; 51(8): 502-11, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24996904

RESUMEN

BACKGROUND: Disruption of 11p15 imprinting results in two fetal growth disorders with opposite phenotypes: the Beckwith-Wiedemann (BWS; MIM 130650) and the Silver-Russell (SRS; MIM 180860) syndromes. DNA methylation defects account for 60% of BWS and SRS cases and, in most cases, occur without any identified mutation in a cis-acting regulatory sequence or a trans-acting factor. METHODS: We investigated whether 11p15 cis-acting sequence variants account for primary DNA methylation defects in patients with SRS and BWS with loss of DNA methylation at ICR1 and ICR2, respectively. RESULTS: We identified a 4.5 kb haplotype that, upon maternal transmission, is associated with a risk of ICR2 loss of DNA methylation in patients with BWS. This novel region is located within the second intron of the KCNQ1 gene, 170 kb upstream of the ICR2 imprinting centre and encompasses two CTCF binding sites. We showed that, within the 4.5 kb region, two SNPs (rs11823023 and rs179436) affect CTCF occupancy at DNA motifs flanking the CTCF 20 bp core motif. CONCLUSIONS: This study shows that genetic variants confer a risk of DNA methylation defect with a parent-of-origin effect and highlights the crucial role of CTCF for the regulation of genomic imprinting of the CDKN1C/KCNQ1 domain.


Asunto(s)
Síndrome de Beckwith-Wiedemann/genética , Canal de Potasio KCNQ1/genética , Sitios de Unión/genética , Factor de Unión a CCCTC , Metilación de ADN/genética , Femenino , Haplotipos/genética , Humanos , Intrones/genética , Canal de Potasio KCNQ1/metabolismo , Masculino , Mutación/genética , Proteínas Represoras/metabolismo
14.
PLoS Genet ; 9(4): e1003482, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23637641

RESUMEN

Some sheep breeds are naturally prolific, and they are very informative for the studies of reproductive genetics and physiology. Major genes increasing litter size (LS) and ovulation rate (OR) were suspected in the French Grivette and the Polish Olkuska sheep populations, respectively. To identify genetic variants responsible for the highly prolific phenotype in these two breeds, genome-wide association studies (GWAS) followed by complementary genetic and functional analyses were performed. Highly prolific ewes (cases) and normal prolific ewes (controls) from each breed were genotyped using the Illumina OvineSNP50 Genotyping Beadchip. In both populations, an X chromosome region, close to the BMP15 gene, harbored clusters of markers with suggestive evidence of association at significance levels between 1E(-05) and 1E(-07). The BMP15 candidate gene was then sequenced, and two novel non-conservative mutations called FecX(Gr) and FecX(O) were identified in the Grivette and Olkuska breeds, respectively. The two mutations were associated with the highly prolific phenotype (p FecX (Gr) = 5.98E(-06) and p FecX(O) = 2.55E(-08)). Homozygous ewes for the mutated allele showed a significantly increased prolificacy (FecX(Gr)/FecX(Gr), LS = 2.50 ± 0.65 versus FecX(+)/FecX(Gr), LS = 1.93 ± 0.42, p<1E(-03) and FecX(O)/FecX(O), OR = 3.28 ± 0.85 versus FecX(+)/FecX(O), OR = 2.02 ± 0.47, p<1E(-03)). Both mutations are located in very well conserved motifs of the protein and altered the BMP15 signaling activity in vitro using a BMP-responsive luciferase test in COV434 granulosa cells. Thus, we have identified two novel mutations in the BMP15 gene associated with increased LS and OR. Notably, homozygous FecX(Gr)/FecX(Gr) Grivette and homozygous FecX(O)/FecX(O) Olkuska ewes are hyperprolific in striking contrast with the sterility exhibited by all other known homozygous BMP15 mutations. Our results bring new insights into the key role played by the BMP15 protein in ovarian function and could contribute to a better understanding of the pathogenesis of women's fertility disorders.


Asunto(s)
Proteína Morfogenética Ósea 15/genética , Ovulación/genética , Animales , Estudio de Asociación del Genoma Completo , Genotipo , Humanos , Tamaño de la Camada/genética , Mutación , Fenotipo , Ovinos
15.
Hum Mutat ; 32(10): 1171-82, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21780245

RESUMEN

The imprinted 11p15 region is organized in two domains, each of them under the control of its own imprinting control region (ICR1 for the IGF2/H19 domain and ICR2 for the KCNQ1OT1/CDKN1C domain). Disruption of 11p15 imprinting results in two fetal growth disorders with opposite phenotypes: the Beckwith-Wiedemann (BWS) and the Silver-Russell (SRS) syndromes. Various 11p15 genetic and epigenetic defects have been demonstrated in BWS and SRS. Among them, isolated DNA methylation defects account for approximately 60% of patients. To investigate whether cryptic copy number variations (CNVs) involving only part of one of the two imprinted domains account for 11p15 isolated DNA methylation defects, we designed a single nucleotide polymorphism array covering the whole 11p15 imprinted region and genotyped 185 SRS or BWS cases with loss or gain of DNA methylation at either ICR1 or ICR2. We describe herein novel small gain and loss CNVs in six BWS or SRS patients, including maternally inherited cis-duplications involving only part of one of the two imprinted domains. We also show that ICR2 deletions do not account for BWS with ICR2 loss of methylation and that uniparental isodisomy involving only one of the two imprinted domains is not a mechanism for SRS or BWS.


Asunto(s)
Síndrome de Beckwith-Wiedemann/genética , Cromosomas Humanos Par 11 , Variaciones en el Número de Copia de ADN , Impresión Genómica , Síndrome de Silver-Russell/genética , Adulto , Secuencia de Bases , Hibridación Genómica Comparativa , Metilación de ADN , Femenino , Humanos , Masculino , Linaje , Polimorfismo de Nucleótido Simple
16.
Mol Genet Genomics ; 285(3): 237-43, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21279652

RESUMEN

Chicken's ability to carry Salmonella without displaying disease symptoms leads to an invisible propagation of Salmonella in poultry stocks. Using chicken lines more resistant to carrier state could improve both animal health and food safety. Previous studies identified several QTL for resistance to carrier state. To improve genome coverage and QTL detection power we produced a new set of 480 informative SNP markers and genotyped a larger number of animals. Ten additional microchromosomes could be covered when compared with previous studies. These new data led to the identification of 18 QTL significant at the chromosome-wide level. The only QTL significant at the genome-wide level were identified on microchromosomes 14 and 22 and have never been identified previously. Using a higher number of animals improved the power and the precision of QTL detection. Some of the QTL newly identified are located close to candidate genes or microsatellite markers previously identified for their involvement in the genetic control of resistance to Salmonella, which confirms their interest for selection purposes.


Asunto(s)
Portador Sano/veterinaria , Pollos/genética , Pollos/microbiología , Enfermedades de las Aves de Corral/genética , Enfermedades de las Aves de Corral/microbiología , Sitios de Carácter Cuantitativo , Salmonelosis Animal/genética , Animales , Portador Sano/microbiología , Polimorfismo de Nucleótido Simple
17.
Hum Mol Genet ; 19(5): 803-14, 2010 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-20007505

RESUMEN

The imprinted expression of the IGF2 and H19 genes is controlled by the imprinting control region 1 (ICR1) located at chromosome 11p15.5. This methylation-sensitive chromatin insulator works by binding the zinc-finger protein CTCF in a parent-specific manner. DNA methylation defects involving the ICR1 H19/IGF2 domain result in two growth disorders with opposite phenotypes: an overgrowth disorder, the Beckwith-Wiedemann syndrome (maternal ICR1 gain of methylation in 10% of BWS cases) and a growth retardation disorder, the Silver-Russell syndrome (paternal ICR1 loss of methylation in 60% of SRS cases). Although a few deletions removing part of ICR1 have been described in some familial BWS cases, little information is available regarding the mechanism of ICR1 DNA methylation defects. We investigated the CTCF gene and the ICR1 domain in 21 BWS patients with ICR1 gain of methylation and 16 SRS patients with ICR1 loss of methylation. We identified four constitutional ICR1 genetic defects in BWS patients, including a familial case. Three of those defects are newly identified imprinting defects consisting of small deletions and a single mutation, which do not involve one of the CTCF binding sites. Moreover, two of those defects affect OCT-binding sequences which are suggested to maintain the unmethylated state of the maternal allele. A single-nucleotide variation was identified in a SRS patient. Our data extends the spectrum of constitutive genetic ICR1 abnormalities and suggests that extensive and accurate analysis of ICR1 is required for appropriate genetic counseling in BWS patients with ICR1 gain of methylation.


Asunto(s)
Cromosomas Humanos Par 11/genética , Retardo del Crecimiento Fetal/genética , Impresión Genómica , Factor II del Crecimiento Similar a la Insulina/genética , Mutación , Factores de Transcripción de Octámeros/metabolismo , ARN no Traducido/genética , Secuencia de Bases , Síndrome de Beckwith-Wiedemann/genética , Estudios de Cohortes , Metilación de ADN , Femenino , Retardo del Crecimiento Fetal/metabolismo , Humanos , Factor II del Crecimiento Similar a la Insulina/metabolismo , Masculino , ARN Largo no Codificante , ARN no Traducido/metabolismo
18.
Physiol Genomics ; 30(3): 232-41, 2007 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-17426114

RESUMEN

Quantitative trait loci (QTL) influencing many traits including backfat thickness and carcass composition have been detected on porcine chromosome 7 (SSC7) in an F2 cross between Large White (LW) and Meishan (MS) pigs. However, the genes and controlled pathways underlying the QTL effects on body phenotype remain unknown. This study aimed at investigating the tissue characteristics at metabolic and cellular levels in pigs that were either homozygous or heterozygous for a body composition SSC7 QTL. A backcross pig (BC3) was first progeny tested to confirm its heterozygoty for the SSC7 QTL; results on all offspring (n = 80) confirmed the QTL effects on body fatness. This boar was then mated with three sows known to be heterozygous for this QTL. In the subset of pigs per genotype, we found that heterozygous LW(QTL7)/MS(QTL7) pigs had smaller adipocytes in backfat, together with a lower basal rate of glucose incorporation into lipids and lower activities of selected lipogenic enzymes in backfat isolated cells, compared with homozygous LW(QTL7)/LW(QTL7) pigs. A higher number of adipocytes was also estimated in backfat of LW(QTL7)/MS(QTL7) animals compared with LW(QTL7)/LW(QTL7) pigs. The SSC7 QTL did not influence oxidative and glycolytic metabolisms of longissimus and trapezius muscles, as estimated by the activities of specific energy metabolism enzymes, or the myofiber type properties. Altogether, this study provides new evidence for an altered adipocyte cellularity in backfat of pigs carrying at least one MS allele for the SSC7 QTL. Some candidate genes known for their functions on adipocyte growth and differentiation are suggested.


Asunto(s)
Tejido Adiposo/anatomía & histología , Tejido Adiposo/metabolismo , Composición Corporal/genética , Cromosomas de los Mamíferos , Músculo Esquelético/anatomía & histología , Músculo Esquelético/metabolismo , Sitios de Carácter Cuantitativo , Porcinos/genética , Animales , Femenino , Funciones de Verosimilitud , Lípidos/genética , Masculino , Linaje , Fenotipo
19.
BMC Genomics ; 7: 13, 2006 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-16433907

RESUMEN

BACKGROUND: On porcine chromosome 7, the region surrounding the Major Histocompatibility Complex (MHC) contains several Quantitative Trait Loci (QTL) influencing many traits including growth, back fat thickness and carcass composition. Previous studies highlighted that a fragment of approximately 3.7 Mb is located within the Swine Leucocyte Antigen (SLA) complex. Internal rearrangements of this fragment were suggested, and partial contigs had been built, but further characterization of this region and identification of all human chromosomal fragments orthologous to this porcine fragment had to be carried out. RESULTS: A whole physical map of the region was constructed by integrating Radiation Hybrid (RH) mapping, BAC fingerprinting data of the INRA BAC library and anchoring BAC end sequences on the human genome. 17 genes and 2 reference microsatellites were ordered on the high resolution IMNpRH212000rad Radiation Hybrid panel. A 1000:1 framework map covering 550 cR12000 was established and a complete contig of the region was developed. New micro rearrangements were highlighted between the porcine and human genomes. A bovine RH map was also developed in this region by mapping 16 genes. Comparison of the organization of this region in pig, cattle, human, mouse, dog and chicken genomes revealed that 1) the translocation of the fragment described previously is observed only on the bovine and porcine genomes and 2) the new internal micro rearrangements are specific of the porcine genome. CONCLUSION: We estimate that the region contains several rearrangements and covers 5.2 Mb of the porcine genome. The study of this complete BAC contig showed that human chromosomal fragments homologs of this heavily rearranged QTL region are all located in the region of HSA6 that surrounds the centromere. This work allows us to define a list of all candidate genes that could explain these QTL effects.


Asunto(s)
Mapeo Contig , Sitios de Carácter Cuantitativo , Mapeo de Híbrido por Radiación , Porcinos/genética , Sintenía , Animales , Bovinos , Cromosomas Artificiales Bacterianos , Cromosomas de los Mamíferos , Perros , Genoma , Humanos , Ratones , Vertebrados/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...