Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Chromatogr A ; 1729: 465033, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-38852269

RESUMEN

Efficient rare earth element (REE) separations are becoming increasingly important to technologies ranging from renewable energy and high-performance magnets to applied radioisotope separations. These separations are made challenging by the extremely similar chemical and physical characteristics of the individual elements, which almost always occupy the 3+ oxidation state under ambient conditions. Herein, we discuss the development of a novel REE separation aimed at obtaining purified samples of neodymium (Nd) on a multi-milligram scale using high-speed counter-current chromatography (HSCCC). The method takes advantage of the subtle differences in ionic radii between neighboring REEs to tune elution rates in dilute acid through implementation of the di-(2-ethylhexyl)phosphoric acid (HDEHP)-infused stationary phase (SP) of the column. A La/Ce/Nd/Sm separation was demonstrated at a significantly higher metal loading than previously accomplished by HSCCC (15 mg, RNd/REE > 0.85), while the Pr/Nd separation was achieved at lower metal loadings (0.3 mg, RNd/Pr = 0.75 - 0.83). The challenges associated with scaling REE separations via HSCCC are presented and discussed within.


Asunto(s)
Distribución en Contracorriente , Neodimio , Distribución en Contracorriente/métodos , Neodimio/química , Neodimio/aislamiento & purificación , Organofosfatos
2.
J Chromatogr A ; 1712: 464478, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-37926007

RESUMEN

Analytical scale purification of rare earth element (REE) radioisotopes is typically accomplished using cation-exchange resins (e.g. AG 50W-X8) and high-performance liquid chromatography (HPLC). Despite the variety of improvements made since the development of this separation process in the 1950s, nearest neighbor separations remain a challenge, as does the issue of irreversible sample adsorption. Herein, we report a study that evaluates the potential of high-speed counter-current chromatography (HSCCC) as an alternative method for purifying REE elements, with specific reference to separations of fission product REE of interest to nuclear forensics. Complementary HSCCC REE separation experiments, one spiked with radiotracer and REE fission product activity, allowed for in depth analysis of resulting fractions from both an elemental (inductively coupled plasma atomic emission spectroscopy, ICP-AES) and radiological (gamma-ray spectrometry, beta counting) purity perspective. The highly reproducible nature of separation profiles generated from HSCCC instruments was leveraged to simplify work-up of samples containing radioisotopes. Subsequent radioanalytical evaluation revealed minimal carryover of Eu into neighboring Sm and Tb fractions (as indicated by presence of 150Eu), and trace contamination of the Tb fraction with Y (as indicated by presence of 91Y). Subtle differences in stationary phase retention across the two columns were reflected in significant variations in decontamination factors of duplicate parallel separations. These differences paired with obtained distribution of radioisotopes provided valuable insights into future improvements. Collectively, this study represents a significant step forward in development of HSCCC technology for task specific REE radioisotope purification.


Asunto(s)
Distribución en Contracorriente , Metales de Tierras Raras , Distribución en Contracorriente/métodos , Metales de Tierras Raras/análisis , Cromatografía Líquida de Alta Presión/métodos , Cromatografía de Fase Inversa , Radioisótopos
3.
J Chromatogr A ; 1682: 463528, 2022 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-36179601

RESUMEN

Following the initial development of High-Speed Counter-Current Chromatography (HSCCC) in the 1960s, several studies have explored its applicability in the separation of rare earth elements (REEs). More recently, however, HSCCC publications have transitioned towards the separation of natural products or pharmaceuticals, leaving the application for REEs largely unexplored from a practical standpoint. Herein, we expand upon prior work in this field by evaluating the suitability of HSCCC to separation of a subset of non-radioactive REEs (Nd, Sm, Eu, Tb, and Y) at 10-4 mol levels using di-(2-ethylhexyl)phosphoric acid (HDEHP) in n-heptane as the stationary phase and hydrochloric acid as the mobile phase. First, the effect of flow rate on the stationary phase volume retention ratio and resolution of Nd/Sm/Eu subgroup was evaluated followed by optimization of step-gradient elution profiles resulting in additional recovery of Tb and Y within a seven-hour window. The five REEs were separated at the baseline resolution level or above. Elution profiles obtained from multiple runs across two independently operated columns and across independent runs were cross analyzed. Reproducibility in elution profiles point to future applications in radioelement separation chemistry, where both chemical and radiochemical purity are of importance.


Asunto(s)
Productos Biológicos , Metales de Tierras Raras , Distribución en Contracorriente/métodos , Ácido Clorhídrico , Preparaciones Farmacéuticas , Reproducibilidad de los Resultados
4.
Inorg Chem ; 60(21): 16223-16232, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34644061

RESUMEN

Aluminate salts precipitated from caustic alkaline solutions exhibit a correlation between the anionic speciation and the identity of the alkali cation in the precipitate, with the aluminate ions occurring either in monomeric (Al(OH)4-) or dimeric (Al2O(OH)62-) forms. The origin of this correlation is poorly understood as are the roles that oligomeric aluminate species play in determining the solution structure, prenucleation clusters, and precipitation pathways. Characterization of aluminate solution speciation with vibrational spectroscopy results in spectra that are difficult to interpret because the ions access a diverse and dynamic configurational space. To investigate the Al(OH)4- and Al2O(OH)62- anions within a well-defined crystal lattice, inelastic neutron scattering (INS) and Raman spectroscopic data were collected and simulated by density functional theory for K2[Al2O(OH)6], Rb2[Al2O(OH)6], and Cs[Al(OH) 4]·2H2O. These structures capture archetypal solution aluminate species: the first two salts contain dimeric Al2O(OH)62- anions, while the third contains the monomeric Al(OH)4- anion. Comparisons were made to the INS and Raman spectra of sodium aluminate solutions frozen in a glassy state. In contrast to solution systems, the crystal lattice of the salts results in well-defined vibrations and associated resolved bands in the INS spectra. The use of a theory-guided analysis of the INS of this solid alkaline aluminate series revealed that differences were related to the nature of the hydrogen-bonding network and showed that INS is a sensitive probe of the degree of completeness and strength of the bond network in hydrogen-bonded materials. Results suggest that the ionic size may explain cation-specific differences in crystallization pathways in alkaline aluminate salts.

5.
Nanoscale ; 13(41): 17373-17385, 2021 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-34713874

RESUMEN

Gibbsite [α-Al(OH)3] is the solubility limiting phase for aluminum across a wide pH range, and it is a common mineral phase with many industrial applications. The growth mechanism of this layered-structure material, however, remains incompletely understood. Synthesis of gibbsite at low to circumneutral pH yields nanoplates with substantial interlayer disorder. Here we examine defects in this material in detail, and the effects of recrystallization in highly alkaline sodium hydroxide solution at 80 °C. We employed a multimodal approach, including scanning electron microscopy, magic-angle spinning nuclear magnetic resonance (MAS-NMR), Raman and infrared spectroscopies, X-ray diffraction (XRD), and X-ray total scattering pair distribution function (XPDF) analysis to characterize the ageing of the nanoplates over several days. XRD and XPDF indicate that gibbsite nanoplates precipitated at circumneutral pH contain dense, truncated sheets imparting a local difference in interlayer distance. These interlayer defects appear well described by flat Al13 aluminum hydroxide nanoclusters nearly isostructural with gibbsite sheets present under synthesis conditions and trapped as interlayer inclusions during growth. Ageing at elevated temperature in alkaline solutions gradually improves crystallinity, showing a gradual increase in H-bonding between interlayer OH groups. Between 7 to 8 vol% of the initial gibbsite nanoparticles exhibit this defect, with the majority of differences disappearing after 2-4 hours of recrystallization in alkaline solution. The results not only identify the source of disorder in gibbsite formed under acidic/neutral conditions but also point to a possible cluster-mediated growth mechanism evident through inclusion of relict oligomers with gibbsite-like topology trapped in the interlayer spaces.

6.
Dalton Trans ; 50(38): 13438-13446, 2021 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-34477710

RESUMEN

In highly alkaline solution, aluminum speciates as the tetrahedrally coordinated aluminate monomer, Al(OH)4- and/or dimer Al2O(OH)62-, yet precipitates as octahedrally coordinated gibbsite (Al(OH)3). This tetrahedral to octahedral transformation governs Al precipitation, which is crucial to worldwide aluminum (Al) production, and to the retrieval and processing of Al-containing caustic high-level radioactive wastes. Despite its significance, the transformation pathway remains unknown. Here we explore the roles of atmospheric water and carbon dioxide in mediating the transformation of the tetrahedrally coordinated potassium aluminate dimer salt (K2Al2O(OH)6) to gibbsite versus potassium dawsonite (KAl(CO3)(OH)2). A combination of in situ attenuated total reflection infrared spectroscopy, ex situ micro X-ray diffraction, and multivariate curve resolution-alternating least squares chemometrics analysis reveals that humidity plays a key role in the transformation by limiting the amount of alkalinity neutralization by dissolved CO2. Lower humidity favors higher alkalinity and incorporation of carbonate species in the final Al product to form KAl(CO3)(OH)2. Higher humidity enables more acid generation that destabilizes dawsonite and favors gibbsite as the solubility limiting phase. This indicates that the transition from tetra- to octahedrally coordinated Al does not have to occur in bulk solution, as has often been hypothesized, but may instead occur in thin water films present on mineral surfaces in humid environments. Our findings suggest that phase selection can be controlled by humidity, which could enable new pathways to Al transformations useful to the Al processing industry, as well as improved understanding of phases that appear in caustic Al-bearing solutions exposed to atmospheric conditions.

7.
Inorg Chem ; 60(9): 6753-6763, 2021 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-33856789

RESUMEN

The solution behavior of a polyoxometalate cluster, LiNa-U24Pp12 (Li24Na24[(UO2O2)24(P2O7)12]) that consists of 24 uranyl ions, peroxide groups, and 12 pyrophosphate linkers, was successfully predicted based on new thermodynamic results using a calorimetric method recently described for uranyl peroxide nanoclusters (UPCs), molybdenum blues, and molybdenum browns. The breakdown of LiNa-U24Pp12 and formation of U24 (Li24[UO2O2OH]24) was monitored in situ via Raman spectroscopy using a custom heating apparatus. A combination of analytical techniques confirmed the simultaneous existence of U24Pp12 and U24 midway through the conversion process and U24 as the single end product. The application of a molecular weight filter resulted in a complete and successful separation of UPCs from solution and, in conjunction with DOSY results, confirmed the presence of large intermediate cluster building blocks.

8.
Phys Chem Chem Phys ; 23(1): 112-122, 2021 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-33305779

RESUMEN

Nitrite (NO2-) is a prevalent nitrogen oxyanion in environmental and industrial processes, but its behavior in solution, including ion pair formation, is complex. This solution phase complexity impacts industries such as nuclear waste treatment, where NO2- significantly affects the solubility of other constituents present in sodium hydroxide (NaOH)-rich nuclear waste. This work provides molecular scale information into sodium nitrite (NaNO2) and NaOH ion-pairing processes to provide a physical basis for later development of thermodynamic models. Solubility isotherms of NaNO2 in aqueous mixtures with NaOH and total alkalinity were also measured. Spectroscopic characterization of these solutions utilized high-field nuclear magnetic resonance spectroscopy (NMR) and Raman spectroscopy, with additional solution structure detailed by X-ray total scattering pairwise distribution function analysis (X-ray PDF). Despite the NO2- deformation Raman band's insensitivity to added NaOH in saturated NaNO2 solutions, 23Na and 15N NMR studies indicated the Na+ and NO2- chemical environments change likely due to ion pairing. The ion pairing correlates with a decrease in diffusion coefficient of solution species as measured by pulsed field gradient 23Na and 1H NMR. Two-dimensional correlation analyses of the 2800-4000 cm-1 Raman region and X-ray PDF indicated that saturated NaNO2 and NaOH mixtures disrupt the hydrogen network of water into a new structure where the length of the OO correlations is contracted relative to the typical H2O structure. Beyond describing the solubility of NaNO2 in a multicomponent electrolyte mixture, these results also indicate that nitrite exhibits greater ion pairing in mixtures of concentrated NaNO2 and NaOH than in comparable solutions with only NaNO2.

9.
Inorg Chem ; 59(24): 18181-18189, 2020 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-33252218

RESUMEN

The molecular speciation of aluminum (Al3+) in alkaline solutions is fundamental to its precipitation chemistry within a number of industrial applications that include ore refinement and industrial processing of Al wastes. Under these conditions, Al3+ is predominantly Al(OH)4-, while at high [Al3+] dimeric species are also known to form. To date, the mechanism of dimer formation remains unclear and is likely influenced by complex ion···ion interactions. In the present work, we investigate a suite of potential dimerization pathways and the role of ion pairing on energetics using static DFT calculations and DFT and density functional tight binding molecular dynamics. Specific cation effects imparted by the background electrolyte cations Na+, Li+, and K+ have been examined. Our simulations predict that, when the Al species are ion-paired with either cation, the formation of the oxo-bridged Al2O(OH)62- is favored with respect to the dihydroxo-bridged Al2(OH)82-, in agreement with previous spectroscopic work. The formation of both dimers first proceeds by bridging of two monomeric units via one hydroxo ligand, leading to a labile Al2(OH)82- isomer. The effect of contact ion pairing of Li+ and K+ on the dimerization energetics is distinctly more favorable than that of Na+, which may have an effect on further oligomerization.

10.
Phys Chem Chem Phys ; 22(42): 24677-24685, 2020 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-33103701

RESUMEN

The role of oligomeric aluminate species in the precipitation of aluminum (Al) phases such as gibbsite (α-Al(OH)3) from aqueous hydroxide solutions remains unclear and difficult to probe directly, despite its importance for developing accurate predictions of Al solubility in highly alkaline systems. Precipitation in this system entails a transition from predominantly tetrahedrally coordinated aluminate (Al(OH)4-) species in solution to octahedrally coordinated Al in gibbsite. Here we report a quantitative study of dissolved Al in the Al-KOH-H2O system using a combination of molecular spectroscopies. We establish a relationship between changes in 27Al NMR chemical shifts and the relative intensity of Raman vibrational bands, indicative of variations in the ensemble speciation of Al in solution, and the formation of unique contact ion pair interactions with the aluminate dimer, Al2O(OH)62-. A strong correlation between the extent of Al oligomerization and the amount of solvated Al was demonstrated by systematically varying the KOH : Al molar ratio. The concentration of dissolved oligomeric Al in solution also directly impacted the particle size and morphology of the precipitated gibbsite. High concentrations of dimeric Al2O(OH)62- yielded smaller and more numerous anhedral to subhedral gibbsite particles, while low concentrations yielded fewer and larger euhedral gibbsite platelets. The collective observations suggest a key role for the Al2O(OH)62- dimer in promoting gibbsite precipitation from solution, with the potassium ion-paired dimer catalyzing a more rapid transformation of Al from tetrahedral coordination in solution to octahedral coordination in gibbsite.

11.
Inorg Chem ; 59(10): 6857-6865, 2020 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-32253907

RESUMEN

Crystallization of Al3+-bearing solid phases from highly alkaline Na2O:Al2O3:H2O solutions commonly necessitates an Al3+ coordination change from tetrahedral to octahedral, but intermediate coordination states are often difficult to isolate. Here, a similar Al3+ coordination change process is examined during the solid-state recrystallization of monosodium aluminate hydrate (MSA) to nonasodium bis(hexahydroxyaluminate) trihydroxide hexahydrate (NSA) at ambient temperature. While the MSA structure contains solely oxolated tetrahedral Al3+, the NSA structure is a molecular aluminate salt solely based upon monomeric octahedral Al3+. Spontaneous recrystallization of MSA and excess sodium hydroxide hydrate into NSA over 3 days of reaction time was clearly evident in X-ray diffractograms and in Raman spectra. In situ single-pulse 27Al magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy and 27Al multiple quantum (MQ) MAS NMR spectroscopy showed no evidence of intermediate aluminates, suggesting that transitional states, such as pentacoordinate Al3+, are short-lived and require spectroscopy with greater time resolution to detect. Such research is advancing upon a detailed mechanistic understanding of Al3+ coordination change mechanisms in these highly alkaline systems, with relevance to aluminum refining, corrosion sciences, and nuclear waste processing.

12.
Dalton Trans ; 49(18): 5869-5880, 2020 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-32307503

RESUMEN

Tetrahedrally coordinated aluminate Al(OH)4- and dialuminate Al2O(OH)62- anions are considered to be major species in aluminum-rich alkaline solutions. However, their relative abundance remains difficult to spectroscopically quantify due to local structure similarities and poorly understood effects arising from extent of polymerization and counter-cations. To help unravel these relationships here we report detailed characterization of three solid-phase analogues as structurally and compositionally well-defined reference materials. We successfully synthesized a cesium salt of the aluminate monomer, CsAl(OH)4·2H2O, for comparison to potassium and rubidium salts of the aluminate dimer, K2Al2O(OH)6, and Rb2Al2O(OH)6, respectively. Single crystal and powder X-ray diffraction methods clearly reveal the structure and purity of these materials for which a combination of 27Al MAS-NMR, Al K-edge X-ray absorption and Raman/IR spectroscopies was then used to fingerprint the two major tetrahedrally coordinated Al species. The resulting insights into the effect of Al-O-Al bridge formation between aluminate tetrahedra on spectroscopic features may also be generalized to the many materials that are based on this motif.

13.
Inorg Chem ; 59(4): 2495-2502, 2020 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-32017549

RESUMEN

Conformational changes of the pyrophosphate (Pp)-functionalized uranyl peroxide nanocluster [(UO2)24(O2)24(P2O7)12]48- ({U24Pp12}), dissolved as a Li/Na salt, can be induced by the titration of alkali cations into solution. The most symmetric conformer of the molecule has idealized octahedral (Oh) molecular symmetry. One-dimensional 31P NMR experiments provide direct evidence that both K+ and Rb+ ions trigger an Oh-to-D4h conformational change within {U24Pp12}. Variable-temperature 31P NMR experiments conducted on partially titrated {U24Pp12} systems show an effect on the rates; increased activation enthalpy and entropy for the D4h-to-Oh transition is observed in the presence of Rb+ compared to K+. Two-dimensional, exchange spectroscopy 31P NMR revealed that magnetization transfer links chemically unique Pp bridges that are present in the D4h conformation and that this magnetization transfer occurs via a conformational rearrangement mechanism as the bridges interconvert between two symmetries. The interconversion is triggered by the departure and reentry of K (or Rb) cations out of and into the cavity of the cluster. This rearrangement allows Pp bridges to interconvert without the need to break bonds. Cs ions exhibit unique interactions with {U24Pp12} clusters and cause only minor changes in the solution 31P NMR signatures, suggesting that Oh symmetry is conserved. Single-crystal X-ray diffraction measurements reveal that the mixed Li/Na/Cs salt adopts D2h molecular symmetry, implying that while solvated, this cluster is in equilibrium with a more symmetric form. These results highlight the unusually flexible nature of the actinide-based {U24Pp12} and its sensitivity to countercations in solution.

14.
Phys Chem Chem Phys ; 22(8): 4368-4378, 2020 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-31850442

RESUMEN

Despite widespread industrial importance, predicting metal solubilities in highly concentrated, multicomponent aqueous solutions is difficult due to poorly understood ion-ion and ion-solvent interactions. Aluminum hydroxide solid phase solubility in concentrated sodium hydroxide (NaOH) solutions is one such case, with major implications for ore refining, as well as processing of radioactive waste stored at U.S. Department of Energy legacy sites, such as the Hanford Site, Washington State. The solubility of gibbsite (α-Al(OH)3) is often not well predicted because other ions affect the activity of hydroxide (OH-) and aluminate (Al(OH)4-) anions. In the present study, we systematically examined the influence of key anions, nitrite (NO2-) and nitrate (NO3-), as sodium salts on the solubility of α-Al(OH)3 in NaOH solutions taking care to establish equilibrium from both under- and oversaturation. Rapid equilibration was enabled by use of a highly pure and crystalline synthetic nano-gibbsite of well-defined particle size and shape. Measured dissolved aluminum concentrations were compared with those predicted by an α-Al(OH)3 solubility model derived for simple Al(OH)4-/OH- systems. Specific anion effects were expressed as an enhancement factor (Alenhc) conveying the excess of dissolved aluminum. At 45 °C, NaNO2 and NaNO3-containing systems exhibited Alenhc values of 2.70 and 1.88, respectively, indicating significant enhancement. The solutions were examined by Raman and high-field 27Al NMR spectroscopy, indicating specific interactions including Al(OH)4--Na+ contact ion pairing and Al(OH)4--NO2-/NO3- ion-ion interactions. Dynamic evolution of the α-Al(OH)3 particles including growth and agglomeration was observed revealing the importance of dissolution/reprecipitation in establishing equilibrium. These studies indicate that incomplete ion hydration, as a result of the low water activity in these concentrated electrolytes, results in: (i) enhanced reactivity of the hydroxide ion with respect to α-Al(OH)3; (ii) increased concentrations of Al(OH)4- in solution; and (iii) stronger ion-ion interactions that act to stabilize the supersaturated solutions. This information on the mechanisms by which α-Al(OH)3 becomes supersaturated is essential for more energy-efficient aluminum processing technologies, including the treatment of millions of gallons of Al(OH)4--rich high-level radioactive waste.

15.
Inorg Chem ; 58(18): 12385-12394, 2019 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-31486636

RESUMEN

Gibbsite (α-Al(OH)3) transformation into layered double hydroxides, such as lithium aluminum hydroxide dihydrate (LiAl-LDH), is generally thought to occur by solid-state intercalation of Li+, in part because of the intrinsic structural similarities in the quasi-2D octahedral Al3+ frameworks of these two materials. However, in caustic environments where gibbsite solubility is high relative to LiAl-LDH, a dissolution-reprecipitation pathway is conceptually enabled, proceeding via precipitation of tetrahedral (Td) aluminate anions (Al(OH)4-) at concentrations held below 150 mM by rapid LiAl-LDH nucleation and growth. In this case, the relative importance of solid-state versus solution pathways is unknown because it requires in situ techniques that can distinguish Al3+ in solution and in the solid phase (gibbsite and LiAl-LDH), simultaneously. Here, we examine this transformation in partially deuterated LiOH solutions, using multinuclear, magic angle spinning, and high field nuclear magnetic resonance spectroscopy (27Al and 6Li MAS NMR), with supporting X-ray diffraction and scanning electron microscopy. In situ 27Al MAS NMR captured the emergence and decline of metastable aluminate ions, consistent with dissolution of gibbsite and formation of LiAl-LDH by precipitation. High field, ex situ 6Li NMR of the the progressively reacted solids resolved an Oh Li+ resonance that narrowed during the transformation. This is likely due to increasing local order in LiAl-LDH, correlating well with observations in high field, ex situ 27Al MAS NMR spectra, where a comparatively narrow LiAl-LDH Oh 27Al resonance emerges upfield of gibbsite resonances. No intermediate pentahedral Al3+ is resolvable. Quantification of aluminate ion concentrations suggests a prominent role for the solution pathway in this system, a finding that could help improve strategies for manipulating Al3+ concentrations in complex caustic waste streams, such as those being proposed to treat the high-level nuclear waste stored at the U.S. Department of Energy's Hanford Nuclear Reservation in Washington State, USA.

16.
Inorg Chem ; 58(18): 12264-12271, 2019 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-31448599

RESUMEN

Little is known about the crystal chemistry of neptunyl peroxide compounds compared to uranyl peroxide compounds, for which dozens of structures have been described. Uranyl peroxides are formed over a broad range of pH and solution conditions, but neptunyl peroxide chemistry is complicated by the ability of H2O2 to act as an oxidizing or reducing agent for Np, depending on the conditions present. The combination of Np(V) in 1 M HCl, H2O2, and CaCl2 under alkaline conditions leads to the immediate crystallization of a neptunyl triperoxide monomer, Ca2[NpO2(O2)3]·9H2O, which is the first Np(VI)-based peroxide compound to be characterized in the solid state and is isostructural to Ca2[UO2(O2)3]·9H2O. The crystal structure reveals bond distances of 1.842(7) Å that are the longest reported to date for nonbridging Np(VI)-Oyl bonds. Computational studies probe the oxidation state and bond distances of the monomer unit and differences in Raman spectra of the neptunyl and uranyl triperoxide compounds.

17.
Chemistry ; 25(24): 6087-6091, 2019 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-30840324

RESUMEN

Uranyl-peroxide capsules are the newest family of polyoxometalates. Although discovered 13 years previously with over 70 topologies reported, there is a lack in the fundamental understanding of assembly mechanisms, particularly the role of the alkali counterions. Herein, the reaction pathway and assembly of uranyl peroxide capsules is reported by tracking the conversion from K+ uranyl triperoxide monomer to the K+ uranyl-peroxide U28 capsule by means of small-angle X-ray scattering and Raman spectroscopy. For the first time, the K+ uranyl-peroxide pentamer face is isolated and structurally characterized, giving credence to the long-held belief that these geometric faces serve as building blocks to the fully formed capsules. Once isolated and re-dissolved, the pentamer face undergoes rapid conversion to capsule forms, underlining its high reactivity that challenges its isolation. Calorimetric measurements of the studied species confirms the pentamer lies on the energy landscape between the monomer and capsule.

18.
Inorg Chem ; 58(1): 439-445, 2019 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-30582324

RESUMEN

The uranyl triperoxide anionic monomer is a fundamental building block for uranyl peroxide polyoxometalate capsules. The reaction pathway from the monomer to the capsule can be greatly altered by the counterion: both the reaction rate and the resulting capsule structure. We synthesized and characterized uranyl triperoxides Mg2UO2(O2)3·13H2O (MgUT), Ca2UO2(O2)3·9H2O (CaUT), Sr2UO2(O2)3·9H2O (SrUT), and K4UO2(O2)3·3H2O (KUT) and compared their thermodynamic stabilities. The enthalpies of formation from oxides and elements of these compounds were calculated by thermochemical cycles from measurements by high temperature oxide melt drop solution calorimetry. Their formation enthalpies from oxides become more negative linearly as a function of the increasing basicity of the respective oxides on the Smith scale. This relationship holds for previously Li and Na analogues. Further affirming the trend, Δ Hf,ox of MgUT departs from linearity, due to the distinct bonding environment of Mg2+, as compared to the other alkalis and alkaline earths in the series.

19.
J Phys Chem B ; 122(48): 10907-10912, 2018 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-30354130

RESUMEN

Pulsed field gradient nuclear magnetic resonance (PFG-NMR) measurements were successfully applied to the 27Al ( I = 5/2) nucleus in concentrated electrolytes to investigate the diffusion of aluminate ions [Al(OH)4-] in simulant high-level nuclear waste (3 M NaOH) between 25 and 85 °C. The temperature-dependent diffusion coefficients obtained from 1H, 23Na, and 27Al PFG-NMR were well fit by a Vogel-Fulcher-Tammann model and a power law equation. Comparison of 27Al diffusion coefficients of 0.1 M Al(OH)4- in ∼3 M MOH (where M = Na+, K+, (CH3)4N+) at room temperature varied in agreement with the expected changes in solution viscosity via Stokes-Einstein relationship, confirming that the dominant Al species at these conditions are Al(OH)4- monomers. This 27Al PFG-NMR study extends an established methodology to a previously unexplored nucleus enabling this experimental technique to be leverage for exploring ion transport, speciation, and solution structure in concentrated electrolytes.

20.
Inorg Chem ; 57(15): 9296-9305, 2018 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-30003788

RESUMEN

Solid UO2 dissolution and uranium speciation in aqueous solutions that promote formation of uranyl peroxide macroanions was examined, with a focus on the role of alkali metals. UO2 powders were dissolved in solutions containing XOH (X = Li, Na, K) and 30% H2O2. Inductively coupled plasma optical emission spectrometry (ICP-OES) measurements of solutions revealed linear trends of uranium versus alkali concentration in solutions resulting from oxidative dissolution of UO2, with X:U molar ratios of 1.0, showing that alkali availability determines the U concentrations in solution. The maximum U concentration in solution was 4.20 × 105 parts per million (ppm), which is comparable to concentrations attained by dissolving UO2 in boiling nitric acid, and was achieved by lithium hydroxide promoted dissolution. Raman spectroscopy and electrospray ionization mass spectrometry (ESI-MS) of solutions indicate that dissolution is accompanied by the formation of various uranyl peroxide cluster species, the identity of which is alkali concentration dependent, revealing remarkably complex speciation at high concentrations of base.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...