Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Mater ; 35(5): e2208061, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36305028

RESUMEN

Incorporating large organic cations to form 2D and mixed 2D/3D structures significantly increases the stability of perovskite solar cells. However, due to their low electron mobility, aligning the organic sheets to ensure unimpeded charge transport is critical to rival the high performances of pure 3D systems. While additives such as methylammonium chloride (MACl) can enable this preferential orientation, so far, no complete description exists explaining how they influence the nucleation process to grow highly aligned crystals. Here, by investigating the initial stages of the crystallization, as well as partially and fully formed perovskites grown using MACl, the origins underlying this favorable alignment are inferred. This mechanism is studied by employing 3-fluorobenzylammonium in quasi-2D perovskite solar cells. Upon assisting the crystallization with MACl, films with a degree of preferential orientation of 94%, capable of withstanding moisture levels of 97% relative humidity for 10 h without significant changes in the crystal structure are achieved. Finally, by combining macroscopic, microscopic, and spectroscopic studies, the nucleation process leading to highly oriented perovskite films is elucidated. Understanding this mechanism will aid in the rational design of future additives to achieve more defect tolerant and stable perovskite optoelectronics.

2.
Nat Electron ; 6(8): 630-641, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38465017

RESUMEN

Wearable sweat sensors can potentially be used to continuously and non-invasively monitor physicochemical biomarkers that contain information related to disease diagnostics and fitness tracking. However, the development of such autonomous sensors faces a number of challenges including achieving steady sweat extraction for continuous and prolonged monitoring, and addressing the high power demands of multifunctional and complex analysis. Here we report an autonomous wearable biosensor that is powered by a perovskite solar cell and can provide continuous and non-invasive metabolic monitoring. The device uses a flexible quasi-two-dimensional perovskite solar cell module that provides ample power under outdoor and indoor illumination conditions (power conversion efficiency exceeding 31% under indoor light illumination). We show that the wearable device can continuously collect multimodal physicochemical data - glucose, pH, sodium ions, sweat rate, and skin temperature - across indoor and outdoor physical activities for over 12 hours.

3.
Adv Mater ; 33(37): e2102736, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34339065

RESUMEN

Embedded sensors are key to optimizing processes and products; they collect data that allow time, energy, and materials to be saved, thereby reducing costs. After production, they remain in place and are used to monitor the long-term structural health of buildings or aircraft. Fueled by climate change, sustainable construction materials such as wood and fiber composites are gaining importance. Current sensors are not optimized for use with these materials and often act as defects that cause catastrophic failures. Here, flexible, highly permeable, and imperceptible sensors (iSens) are introduced that integrate seamlessly into a component. Their porous substrates are readily infused with adhesives and withstand harsh conditions. In situ resistive temperature measurements and capacitive sensing allows monitoring of adhesives curing as used in wooden structures and fiber composites. The devices also act as heating elements to reduce the hardening time of the glue. Results are analyzed using numerical simulations and theoretical analysis. The suggested iSens technology is widely applicable and represents a step towards realizing the Internet of Things for construction materials.

4.
Adv Sci (Weinh) ; 7(24): 2002586, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33344134

RESUMEN

X-ray detectors play a pivotal role in development and advancement of humankind, from far-reaching impact in medicine to furthering the ability to observe distant objects in outer space. While other electronics show the ability to adapt to flexible and lightweight formats, state-of-the-art X-ray detectors rely on materials requiring bulky and fragile configurations, severely limiting their applications. Lead halide perovskites is one of the most rapidly advancing novel materials with success in the field of semiconductor devices. Here, an ultraflexible, lightweight, and highly conformable passively operated thin film perovskite X-ray detector with a sensitivity as high as 9.3 ± 0.5 µC Gy-1 cm-2 at 0 V and a remarkably low limit of detection of 0.58 ± 0.05 µGy s-1 is presented. Various electron and hole transporting layers accessing their individual impact on the detector performance are evaluated. Moreover, it is shown that this ultrathin form-factor allows for fabrication of devices detecting X-rays equivalently from front and back side.

5.
Nat Mater ; 19(10): 1102-1109, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32541932

RESUMEN

Biodegradable and biocompatible elastic materials for soft robotics, tissue engineering or stretchable electronics with good mechanical properties, tunability, modifiability or healing properties drive technological advance, and yet they are not durable under ambient conditions and do not combine all the attributes in a single platform. We have developed a versatile gelatin-based biogel, which is highly resilient with outstanding elastic characteristics, yet degrades fully when disposed. It self-adheres, is rapidly healable and derived entirely from natural and food-safe constituents. We merge all the favourable attributes in one material that is easy to reproduce and scalable, and has a low-cost production under ambient conditions. This biogel is a step towards durable, life-like soft robotic and electronic systems that are sustainable and closely mimic their natural antetypes.

6.
Sci Adv ; 3(8): e1700738, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28798959

RESUMEN

Controlling the size and shape of semiconducting nanocrystals advances nanoelectronics and photonics. Quantum-confined, inexpensive, solution-derived metal halide perovskites offer narrowband, color-pure emitters as integral parts of next-generation displays and optoelectronic devices. We use nanoporous silicon and alumina thin films as templates for the growth of perovskite nanocrystallites directly within device-relevant architectures without the use of colloidal stabilization. We find significantly blue-shifted photoluminescence emission by reducing the pore size; normally infrared-emitting materials become visibly red, and green-emitting materials become cyan and blue. Confining perovskite nanocrystals within porous oxide thin films drastically increases photoluminescence stability because the templates auspiciously serve as encapsulation. We quantify the template-induced size of the perovskite crystals in nanoporous silicon with microfocus high-energy x-ray depth profiling in transmission geometry, verifying the growth of perovskite nanocrystals throughout the entire thickness of the nanoporous films. Low-voltage electroluminescent diodes with narrow, blue-shifted emission fabricated from nanocrystalline perovskites grown in embedded nanoporous alumina thin films substantiate our general concept for next-generation photonic devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...