Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Headache Pain ; 25(1): 120, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39044141

RESUMEN

Migraine is a neurological disorder characterized by episodes of severe headache. Cortical spreading depression (CSD), the electrophysiological equivalent of migraine aura, results in opening of pannexin 1 megachannels that release ATP and triggers parenchymal neuroinflammatory signaling cascade in the cortex. Migraine symptoms suggesting subcortical dysfunction bring subcortical spread of CSD under the light. Here, we investigated the role of purinergic P2X7 receptors on the subcortical spread of CSD and its consequent neuroinflammation using a potent and selective P2X7R antagonist, JNJ-47965567. P2X7R antagonism had no effect on the CSD threshold and characteristics but increased the latency to hypothalamic voltage deflection following CSD suggesting that ATP acts as a mediator in the subcortical spread. P2X7R antagonism also prevented cortical and subcortical neuronal activation following CSD, revealed by bilateral decrease in c-fos positive neuron count, and halted CSD-induced neuroinflammation revealed by decreased neuronal HMGB1 release and decreased nuclear translocation of NF-kappa B-p65 in astrocytes. In conclusion, our data suggest that P2X7R plays a role in CSD-induced neuroinflammation, subcortical spread of CSD and CSD-induced neuronal activation hence can be a potential target.


Asunto(s)
Depresión de Propagación Cortical , Enfermedades Neuroinflamatorias , Antagonistas del Receptor Purinérgico P2X , Receptores Purinérgicos P2X7 , Depresión de Propagación Cortical/efectos de los fármacos , Depresión de Propagación Cortical/fisiología , Animales , Antagonistas del Receptor Purinérgico P2X/farmacología , Masculino , Receptores Purinérgicos P2X7/metabolismo , Receptores Purinérgicos P2X7/efectos de los fármacos , Optogenética , Ratones , Trastornos Migrañosos/fisiopatología , Trastornos Migrañosos/metabolismo , Trastornos Migrañosos/tratamiento farmacológico , Neuronas/efectos de los fármacos , Ratones Endogámicos C57BL , Niacinamida/análogos & derivados , Piperazinas
2.
J Neuroinflammation ; 20(1): 295, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-38082296

RESUMEN

The role of high mobility group box 1 (HMGB1) in inflammation is well characterized in the immune system and in response to tissue injury. More recently, HMGB1 was also shown to initiate an "inflammatory signaling cascade" in the brain parenchyma after a mild and brief disturbance, such as cortical spreading depolarization (CSD), leading to headache. Despite substantial evidence implying a role for inflammatory signaling in prevalent neuropsychiatric disorders such as migraine and depression, how HMGB1 is released from healthy neurons and how inflammatory signaling is initiated in the absence of apparent cell injury are not well characterized. We triggered a single cortical spreading depolarization by optogenetic stimulation or pinprick in naïve Swiss albino or transgenic Thy1-ChR2-YFP and hGFAP-GFP adult mice. We evaluated HMGB1 release in brain tissue sections prepared from these mice by immunofluorescent labeling and immunoelectron microscopy. EzColocalization and Costes thresholding algorithms were used to assess the colocalization of small extracellular vesicles (sEVs) carrying HMGB1 with astrocyte or microglia processes. sEVs were also isolated from the brain after CSD, and neuron-derived sEVs were captured by CD171 (L1CAM). sEVs were characterized with flow cytometry, scanning electron microscopy, nanoparticle tracking analysis, and Western blotting. We found that HMGB1 is released mainly within sEVs from the soma of stressed neurons, which are taken up by surrounding astrocyte processes. This creates conditions for selective communication between neurons and astrocytes bypassing microglia, as evidenced by activation of the proinflammatory transcription factor NF-ĸB p65 in astrocytes but not in microglia. Transmission immunoelectron microscopy data illustrated that HMGB1 was incorporated into sEVs through endosomal mechanisms. In conclusion, proinflammatory mediators released within sEVs can induce cell-specific inflammatory signaling in the brain without activating transmembrane receptors on other cells and causing overt inflammation.


Asunto(s)
Astrocitos , Proteína HMGB1 , Animales , Ratones , Astrocitos/metabolismo , Proteína HMGB1/metabolismo , Inflamación/etiología , Neuronas/metabolismo , Transducción de Señal
3.
J Cereb Blood Flow Metab ; 43(11): 1951-1966, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37435741

RESUMEN

Periventricular white matter lesions (WMLs) are common MRI findings in migraine with aura (MA). Although hemodynamic disadvantages of vascular supply to this region create vulnerability, the pathophysiological mechanisms causing WMLs are unclear. We hypothesize that prolonged oligemia, a consequence of cortical spreading depolarization (CSD) underlying migraine aura, may lead to ischemia/hypoxia at hemodynamically vulnerable watershed zones fed by long penetrating arteries (PAs). For this, we subjected mice to KCl-triggered single or multiple CSDs. We found that post-CSD oligemia was significantly deeper at medial compared to lateral cortical areas, which induced ischemic/hypoxic changes at watershed areas between the MCA/ACA, PCA/anterior choroidal and at the tip of superficial and deep PAs, as detected by histological and MRI examination of brains 2-4 weeks after CSD. BALB-C mice, in which MCA occlusion causes large infarcts due to deficient collaterals, exhibited more profound CSD-induced oligemia and were more vulnerable compared to Swiss mice such that a single CSD was sufficient to induce ischemic lesions at the tip of PAs. In conclusion, CSD-induced prolonged oligemia has potential to cause ischemic/hypoxic injury at hemodynamically vulnerable brain areas, which may be one of the mechanisms underlying WMLs located at the tip of medullary arteries seen in MA patients.


Asunto(s)
Depresión de Propagación Cortical , Migraña con Aura , Sustancia Blanca , Ratones , Humanos , Animales , Depresión de Propagación Cortical/fisiología , Constricción , Ratones Endogámicos BALB C , Arterias , Isquemia
4.
Artículo en Inglés | MEDLINE | ID: mdl-37098250

RESUMEN

Antimicrobial coatings are designed to inhibit the growth of pathogens and have been used to reduce foodborne illness bacteria on food processing equipment. Novel N-halamine based antimicrobial coatings are highly advantageous due to their unique properties and low cost, and are being investigated for applications in food safety, health care, water and air disinfection, etc. In this study, we evaluated the chemical safety of a novel N-halamine antimicrobial polymer coating (Halofilm) for use on food processing equipment. Migration tests were performed on stainless steel tiles prepared with four different treatment groups: negative control, positive control, Halofilm coating without chlorination, and Halofilm coating with chlorination. An LC-MS/MS method was developed and validated for four formulation components: polyethylenimine (PEI), Trizma® base, hydantoin acrylamide (HA) and dopamine methacrylamide (DMA), followed by stability and recovery tests. Migration tests were conducted at 40 °C with three food simulants (10, 50 and 95% ethanol/water) to mimic various food properties, and aliquots of migration extracts were analyzed at 2, 8, 72, 240 and 720 h. In general, measured concentration levels were consistent among simulant types for the four tested chemicals. Chlorinated tiles had non-detects for three analytes (PEI, HA and DMA), and less than 0.05 mg/kg of HA migration over 30 days. A chlorination step could possibly change the measured mass (m/z) hence leading to non-detects in targeted LC-MS/MS. In non-chlorinated tiles, all four compounds were detected during the migration test. This suggests that addition of the chlorination step may have a stabilizing effect on the polymer. Additionally, full scan high resolution mass spectrometry (HRMS) analysis was employed to screen for migration of other extractable and leachable (E&L) chemicals, which led to the identification of eight common E&L chemicals. To our knowledge, this is the first report evaluating chemical migration from an N-halamine antimicrobial polymer coating product.


Asunto(s)
Antiinfecciosos , Contaminación de Alimentos , Contaminación de Alimentos/análisis , Cromatografía Liquida , Embalaje de Alimentos , Espectrometría de Masas en Tándem , Antiinfecciosos/análisis , Manipulación de Alimentos , Polímeros/análisis
5.
Int J Biol Macromol ; 230: 123121, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36610571

RESUMEN

With emerging needs of wound care management, a multi-functional wound dressing is needed. To prevent infection and reduce patient suffering, antibacterial efficacy against a broad-spectrum of bacteria plus robust antifouling are among the most preferred properties. In this study, a wound dressing was created with antibacterial and anti-fouling capabilities is presented. The approaches used a synthesized tri-functional copolymer comprised of an N-halamine precursor moiety, a marine-inspired surface binding dopamine moiety, and a zwitterionic anti-adhesion moiety bonded onto a commercial cotton gauze. The resulting HaloCare™ wound dressing demonstrated >99.99 % inactivation within 5 min against E. coli and a panel of ESKAPE pathogens plus achieved 98.77 % reduction of non-specific protein binding. HaloCare was also shown to be compatible with hemostatic agents without impacting hemostatic efficacy. HaloCare shows great potential particularly in traumatic injury events as an infection preventing and hemostatic wound management system.


Asunto(s)
Incrustaciones Biológicas , Hemostáticos , Humanos , Hemostáticos/farmacología , Hemostáticos/química , Escherichia coli , Incrustaciones Biológicas/prevención & control , Vendajes , Antibacterianos/farmacología , Antibacterianos/química , Gossypium
6.
Turk Psikiyatri Derg ; 34(4): 272-281, 2023.
Artículo en Inglés, Turco | MEDLINE | ID: mdl-38173328

RESUMEN

OBJECTIVE: Under physiological conditions, astrocytes produce lactate to meet the increased synaptic energy demand due to neuronal activity. In the light of the findings showing that this process is disrupted in the pathophysiology of major depression, the aim of this study is to investigate the effect of pharmacological inhibition of perisynaptic astrocyte glycogen utilization on anxiety-like behavior and depression-like behavior in female and male mice. METHODS: In this study, DAB (1,4-dideoxy-1,4-imino-D-arabinitol), which is an inhibitor of glycogen breaking enzyme glycogen phosphorylase, was intrahippocampally administered to 15 female and 14 male Swiss albino mice, while 15 female and 12 male Swiss albino mice received intrahippocampal saline injections. Three and five days after the injections, the anxiety-like and depression-like behaviors of the mice were assessed by locomotor activity, open-field test, light-dark box test, tail suspension test and sucrose preference test. RESULTS: Three days after injection, neither depression-like nor anxietylike significant behavioral changes were detected in the male experimental group mice compared to the control group; but an increase in locomotor activity (p=0.05) and time spent in the open-field (p=0.01) were observed on the fifth day. In evaluations of the female experimental group mice on the third and fifth days, depression-like and anxiety-like behaviors were found similar to the control group, as seen in the male mice. The only significant difference in the experimental group female mice was found in the sucrose preference test, which revealed an increased tendency to prefer sucrose (p=0.003) compared to the control group. CONCLUSION: The inhibition of glycogen use in the hippocampus by DAB did not affect anxiety-like and depression-like behaviors 3 and 5 days after injection in both female and male mice. The increase in the time spent in the open-field by male experimental group mice was associated not with anxiety, but with increase in the locomotor activity. The fact that no significant difference was observed in the light-dark box test, which is another test used to evaluate anxiety, supported this opinion. The increase seen in the sucrose preference test in female experimental group mice was not interpreted as an increase in hedonic behavior because prevention of glycogen breakdown in the hypothalamus might have homeostatically increased sugar-craving and therefore resulted in an increase in sucrose preference. Different set of tests better targeting the energy and glucose metabolism and applied at farther time points than surgery are recommended for future studies.


Asunto(s)
Depresión , Glucógeno , Humanos , Ratones , Animales , Masculino , Femenino , Glucógeno/metabolismo , Astrocitos/metabolismo , Ansiedad , Sacarosa/metabolismo
7.
J Headache Pain ; 23(1): 107, 2022 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-35986251

RESUMEN

BACKGROUND: Unlike the spontaneously appearing aura in migraineurs, experimentally, cortical spreading depression (CSD), the neurophysiological correlate of aura is induced by non-physiological stimuli. Consequently, neural mechanisms involved in spontaneous CSD generation, which may provide insight into how migraine starts in an otherwise healthy brain, remain largely unclear. We hypothesized that CSD can be physiologically induced by sensory stimulation in primed mouse brain. METHODS: Cortex was made susceptible to CSD with partial inhibition of Na+/K+-ATPase by epidural application of a low concentration of Na+/K+-ATPase blocker ouabain, allowing longer than 30-min intervals between CSDs or by knocking-down α2 subunit of Na+/K+-ATPase, which is crucial for K+ and glutamate re-uptake, with shRNA. Stimulation-triggered CSDs and extracellular K+ changes were monitored in vivo electrophysiologically and a K+-sensitive fluoroprobe (IPG-4), respectively. RESULTS: After priming with ouabain, photic stimulation significantly increased the CSD incidence compared with non-stimulated animals (44.0 vs. 4.9%, p < 0.001). Whisker stimulation also significantly increased the CSD incidence, albeit less effectively (14.9 vs. 2.4%, p = 0.02). Knocking-down Na+/K+-ATPase (50% decrease in mRNA) lowered the CSD threshold in all mice tested with KCl but triggered CSDs in 14.3% and 16.7% of mice with photic and whisker stimulation, respectively. Confirming Na+/K+-ATPase hypofunction, extracellular K+ significantly rose during sensory stimulation after ouabain or shRNA treatment unlike controls. In line with the higher CSD susceptibility observed, K+ rise was more prominent after ouabain. To gain insight to preventive mechanisms reducing the probability of stimulus-evoked CSDs, we applied an A1-receptor antagonist (DPCPX) to the occipital cortex, because adenosine formed during stimulation from ATP can reduce CSD susceptibility. DPCPX induced spontaneous CSDs but only small-DC shifts along with suppression of EEG spikes during photic stimulation, suggesting that the inhibition co-activated with sensory stimulation could limit CSD ignition when K+ uptake was not sufficiently suppressed as with ouabain. CONCLUSIONS: Normal brain is well protected against CSD generation. For CSD to be ignited under physiological conditions, priming and predisposing factors are required as seen in migraine patients. Intense sensory stimulation has potential to trigger CSD when co-existing conditions bring extracellular K+ and glutamate concentrations over CSD-ignition threshold and stimulation-evoked inhibitory mechanisms are overcome.


Asunto(s)
Depresión de Propagación Cortical , Trastornos Migrañosos , Migraña con Aura , Adenosina Trifosfatasas/farmacología , Animales , Encéfalo , Depresión de Propagación Cortical/fisiología , Ácido Glutámico , Ratones , Ouabaína/farmacología , ARN Interferente Pequeño/farmacología
8.
Biofilm ; 4: 100076, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35572468

RESUMEN

A copolymer termed HASL produced from monomeric units of 2-acrylamido-2-methyl-1-(5-methylhydantoinyl)propane (HA) and of 3-(trimethoxysilyl)propyl methacrylate (SL) has been coated onto stainless steel and Inconel™ substrates, which upon halogenation with either aqueous oxidative chlorine or bromine, became antimicrobial. It has been demonstrated that the halogenated stainless steel and Inconel™ substrates were effective in producing 6 to 7 log inactivations of Staphylococcus aureus and Escherichia coli O157:H7 within about 10 min, and in prevention of Pseudomonas aeruginosa biofilm formation over a period of at least 72 h on the stainless steel substrates. Upon loss of halogen, the HASL coating could be re-charged with aqueous halogen. The HASL coating was easily applied to the substrates via a simple dip-coating method and was reasonably stable to contact with water. Both chlorinated substrates could be loaded with at least 6 × 1016 oxidative Cl atoms per cm2 and maintained a loading of greater than 1 × 1016 chlorine atoms per cm2 for a period of 3-7 days while agitated in aqueous solution. After loss of chlorine to a level below 1 × 1016 atoms per cm2, the substrates could be recharged to the 6 × 1016 Cl atoms per cm2 level for at least 5 times over a 28 day period. The new antimicrobial coating technology has potential for use in a variety of important applications, particularly for water treatment and storage on spacecraft.

9.
Sci Rep ; 10(1): 12793, 2020 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-32732932

RESUMEN

Although cortical spreading depolarizations (CSD) were originally assumed to be homogeneously and concentrically propagating waves, evidence obtained first in gyrencephalic brains and later in lissencephalic brains suggested a rather non-uniform propagation, shaped heterogeneously by factors like cortical region differences, vascular anatomy, wave recurrences and refractory periods. Understanding this heterogeneity is important to better evaluate the experimental models on the mechanistics of CSD and to make appropriate clinical estimations on neurological disorders like migraine, stroke, and traumatic brain injury. This study demonstrates the application of optical flow analysis tools for systematic and objective evaluation of spatiotemporal CSD propagation patterns in anesthetized mice and compares the propagation profile in different CSD induction models. Our findings confirm the asymmetric angular CSD propagation in lissencephalic brains and suggest a strong dependency on induction-method, such that continuous potassium chloride application leads to significantly higher angular propagation variability compared to optogenetically-induced CSDs.


Asunto(s)
Encéfalo/diagnóstico por imagen , Encéfalo/fisiopatología , Depresión de Propagación Cortical/efectos de los fármacos , Depresión de Propagación Cortical/fisiología , Imágenes de Contraste de Punto Láser/métodos , Lisencefalia/fisiopatología , Neuroimagen/métodos , Flujo Optico , Cloruro de Potasio/farmacología , Animales , Femenino , Masculino , Ratones
10.
Exp Neurol ; 332: 113392, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32610106

RESUMEN

Although it has been documented that central nervous system pericytes are able to contract in response to physiological, pharmacological or pathological stimuli, the underlying mechanism of pericyte contractility is incompletely understood especially in downstream pericytes that express low amounts of alpha-smooth muscle actin (α-SMA). To study whether pericyte contraction involves F-actin polymerization as in vascular smooth muscle cells, we increased retinal microvascular pericyte tonus by intravitreal injection of a vasoconstrictive agent, noradrenaline (NA). The contralateral eye of each mouse was used for vehicle injection. The retinas were rapidly extracted and fixed within 2 min after injections. Polymeric/filamentous (F-actin) and monomeric/globular (G-actin) forms of actin were labeled by fluorescently-conjugated phalloidin and deoxyribonuclease-I, respectively. We studied 108 and 83 pericytes from 6 NA- and 6 vehicle-treated retinas and, found that F/G-actin ratio, a microscopy-based index of F-actin polymerization, significantly increased in NA-treated retinas [median (IQR): 4.2 (3.1) vs. 3.5 (2.1), p = .006], suggesting a role for F-actin polymerization in pericyte contractility. Shift from G-actin monomers to polymerized F-actin was more pronounced in 5th and 6th order contracted pericytes compared to non-contracted ones [7.6 (4.7) vs. 3.2 (1.2), p < .001], possibly due to their dependence on de novo F-actin polymerization for contractile force generation because they express α-SMA in low quantities. Capillaries showing F-actin polymerization had significantly reduced diameters compared to the ones that did not exhibit increased F/G-actin ratio in pericytes [near soma / branch origin diameter; 0.67 (0.14) vs. 0.81 (0.34), p = .005]. NA-responsive capillaries generally did not show nodal constrictions but a tide-like diameter decrease, reaching a maximum near pericyte soma. These findings suggest that pericytes on high order downstream capillaries have F-actin-mediated contractile capability, which may contribute to the vascular resistance and blood flow regulation in capillary bed.


Asunto(s)
Actinas/metabolismo , Actinas/fisiología , Pericitos/fisiología , Vasos Retinianos/fisiología , Animales , Capilares/fisiología , Femenino , Masculino , Ratones , Contracción Muscular/efectos de los fármacos , Músculo Liso Vascular/citología , Músculo Liso Vascular/efectos de los fármacos , Músculo Liso Vascular/fisiología , Norepinefrina/farmacología , Polimerizacion , Vasoconstrictores/farmacología
11.
Exp Neurol ; 307: 45-51, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29856967

RESUMEN

An increase in cortical excitability may be one of the factors mediating stress-induced vulnerability to neuropsychiatric disorders. Since stress increases extracellular glutamate and predisposes to migraine with aura attacks, we aimed to study the effect of stress on cortical spreading depression (CSD), the biological substrate of migraine aura and a measure of cortical excitability. CSD was induced by increasing concentrations of KCl applied over the dura with 5-minute intervals and recorded from parieto-occipital cortex to assess the CSD-induction threshold in acutely-stressed, chronically-stressed and naive mice. To study the mechanisms of acute stress-induced decrease in CSD threshold, we systemically administered clonidine, yohimbine, propranolol, CRH1 receptor antagonist NBI27914, mifepristone and spironolactone at doses shown to be effective on stress as well as a central noradrenergic neurotoxin (DSP-4) before acute stress. CSD threshold was significantly lowered by acute and chronic stress as well as central noradrenergic denervation. Clonidine and mifepristone further decreased the CSD threshold below the acute stress-induced levels, whereas yohimbine reversed the acute stress-induced decrease in CSD threshold compared to the saline-injected and stressed control groups. Propranolol, NBI27914 and spironolactone did not modify the effect of acute stress on CSD threshold. Stress increases cortical excitability as illustrated by a decrease in CSD-induction threshold. This action of acute stress is mediated by α2-adrenergic and glucocorticoid receptors. The decrease in CSD threshold may account for the stress-induced susceptibility to migraine. CSD may be used as a tool to study the link between stress-related disorders and cortical excitability.


Asunto(s)
Corteza Cerebral/metabolismo , Depresión de Propagación Cortical/fisiología , Receptores Adrenérgicos alfa 2/metabolismo , Receptores de Glucocorticoides/metabolismo , Estrés Psicológico/metabolismo , Antagonistas Adrenérgicos beta/farmacología , Compuestos de Anilina/farmacología , Animales , Corteza Cerebral/efectos de los fármacos , Depresión de Propagación Cortical/efectos de los fármacos , Masculino , Ratones , Pirimidinas/farmacología , Receptores de Glucocorticoides/análisis , Estrés Psicológico/psicología
12.
Data Brief ; 18: 1462-1465, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29900326

RESUMEN

The data presented in this article are related to the research article entitled "Microembolism of single cortical arterioles can induce spreading depression and ischemic injury; a potential trigger for migraine and related MRI lesions" (Donmez-Demir et al., 2018) [1]. This article presents data showing that thrombosis of a small ascending cortical vein (25 µm) in the mouse may also trigger spreading depression as does penetrating arteriole occlusion, although less frequently (22% vs. 100%).

13.
Exp Neurol ; 299(Pt A): 26-41, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28974375

RESUMEN

Tay-Sachs disease is a severe lysosomal storage disorder caused by mutations in Hexa, the gene that encodes for the α subunit of lysosomal ß-hexosaminidase A (HEXA), which converts GM2 to GM3 ganglioside. Unexpectedly, Hexa-/- mice have a normal lifespan and show no obvious neurological impairment until at least one year of age. These mice catabolize stored GM2 ganglioside using sialidase(s) to remove sialic acid and form the glycolipid GA2, which is further processed by ß-hexosaminidase B. Therefore, the presence of the sialidase (s) allows the consequences of the Hexa defect to be bypassed. To determine if the sialidase NEU3 contributes to GM2 ganglioside degradation, we generated a mouse model with combined deficiencies of HEXA and NEU3. The Hexa-/-Neu3-/- mice were healthy at birth, but died at 1.5 to 4.5months of age. Thin-layer chromatography and mass spectrometric analysis of the brains of Hexa-/-Neu3-/- mice revealed the abnormal accumulation of GM2 ganglioside. Histological and immunohistochemical analysis demonstrated cytoplasmic vacuolation in the neurons. Electron microscopic examination of the brain, kidneys and testes revealed pleomorphic inclusions of many small vesicles and complex lamellar structures. The Hexa-/-Neu3-/- mice exhibited progressive neurodegeneration with neuronal loss, Purkinje cell depletion, and astrogliosis. Slow movement, ataxia, and tremors were the prominent neurological abnormalities observed in these mice. Furthermore, radiographs revealed abnormalities in the skeletal bones of the Hexa-/-Neu3-/- mice. Thus, the Hexa-/-Neu3-/- mice mimic the neuropathological and clinical abnormalities of the classical early-onset Tay-Sachs patients, and provide a suitable model for the future pre-clinical testing of potential treatments for this condition.


Asunto(s)
Gangliosidosis GM2/genética , Hexosaminidasa B/genética , Neuraminidasa/genética , Enfermedad de Tay-Sachs/genética , Animales , Química Encefálica/genética , Vesículas Citoplasmáticas/patología , Gangliosidosis GM2/metabolismo , Gliosis/genética , Gliosis/patología , Glicoesfingolípidos/metabolismo , Cojera Animal/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuraminidasa/deficiencia , Neuronas/patología , Células de Purkinje/patología , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Enfermedad de Tay-Sachs/patología
14.
Ann Neurol ; 83(1): 61-73, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29244233

RESUMEN

OBJECTIVE: Glycogen in astrocyte processes contributes to maintenance of low extracellular glutamate and K+ concentrations around excitatory synapses. Sleep deprivation (SD), a common migraine trigger, induces transcriptional changes in astrocytes, reducing glycogen breakdown. We hypothesize that when glycogen utilization cannot match synaptic energy demand, extracellular K+ can rise to levels that activate neuronal pannexin-1 channels and downstream inflammatory pathway, which might be one of the mechanisms initiating migraine headaches. METHODS: We suppressed glycogen breakdown by inhibiting glycogen phosphorylation with 1,4-dideoxy-1,4-imino-D-arabinitol (DAB) and by SD. RESULTS: DAB caused neuronal pannexin-1 large pore opening and activation of the downstream inflammatory pathway as shown by procaspase-1 cleavage and HMGB1 release from neurons. Six-hour SD induced pannexin-1 mRNA. DAB and SD also lowered the cortical spreading depression (CSD) induction threshold, which was reversed by glucose or lactate supplement, suggesting that glycogen-derived energy substrates are needed to prevent CSD generation. Supporting this, knocking down the neuronal lactate transporter MCT2 with an antisense oligonucleotide or inhibiting glucose transport from vessels to astrocytes with intracerebroventricularly delivered phloretin reduced the CSD threshold. In vivo recordings with a K+ -sensitive/selective fluoroprobe, Asante Potassium Green-4, revealed that DAB treatment or SD caused a significant rise in extracellular K+ during whisker stimulation, illustrating the critical role of glycogen in extracellular K+ clearance. INTERPRETATION: Synaptic metabolic stress caused by insufficient glycogen-derived energy substrate supply can activate neuronal pannexin-1 channels as well as lower the CSD threshold. Therefore, conditions that limit energy supply to synapses (eg, SD) may predispose to migraine attacks, as suggested by genetic studies associating glucose or lactate transporter deficiency with migraine. Ann Neurol 2018;83:61-73.


Asunto(s)
Química Encefálica , Depresión de Propagación Cortical/genética , Glucógeno/metabolismo , Privación de Sueño/fisiopatología , Animales , Arabinosa/farmacología , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Conexinas/efectos de los fármacos , Conexinas/metabolismo , Metabolismo Energético , Técnicas de Silenciamiento del Gen , Proteína HMGB1/metabolismo , Iminofuranosas/farmacología , Inyecciones Intraventriculares , Ratones , Transportadores de Ácidos Monocarboxílicos/antagonistas & inhibidores , Proteínas del Tejido Nervioso/efectos de los fármacos , Proteínas del Tejido Nervioso/metabolismo , Oligonucleótidos Antisentido/farmacología , Floretina/farmacología , Potasio/fisiología , Alcoholes del Azúcar/farmacología , Vibrisas/inervación
15.
Mol Neurobiol ; 55(7): 6193-6200, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29270918

RESUMEN

Determining the time of stroke onset in order to apply recanalization therapies within the accepted therapeutic window and the correct diagnosis of transient ischemic attack (TIA) are two common clinical problems in acute cerebral ischemia management. Therefore, biomarkers helping in this conundrum could be very helpful. We developed mouse models of distal middle cerebral artery occlusion mimicking TIA and ischemic stroke (IS), respectively. Plasma samples were analyzed by metabolomics at 6, 12, 24, and 48 h post onset in order to find TIA- and time-related stroke biomarkers. The results were validated in a second experimental cohort. Plasma metabolomic profiles identified time after stroke events with a very high accuracy. Specific metabolites pointing to a recent event (< 6 h) were identified. A multivariate (partial least square discriminant analyses [PLS-DA]) model was also able to separate samples from TIA, IS, and sham events with high accuracy and to obtain specific metabolites for each time point. The combination of mice models of focal ischemia with plasma metabolomics allows the discovery of candidate biomarkers for the diagnosis and estimation of onset time of stroke and TIA diagnosis.


Asunto(s)
Ataque Isquémico Transitorio/diagnóstico , Ataque Isquémico Transitorio/metabolismo , Metabolómica , Animales , Infarto de la Arteria Cerebral Media/sangre , Infarto de la Arteria Cerebral Media/complicaciones , Infarto de la Arteria Cerebral Media/metabolismo , Ataque Isquémico Transitorio/sangre , Masculino , Metaboloma , Ratones , Accidente Cerebrovascular/sangre , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/metabolismo , Factores de Tiempo
16.
Pediatr Blood Cancer ; 65(2)2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28876531

RESUMEN

Congenital plasminogen (Plg) deficiency leads to the development of ligneous membranes on mucosal surfaces. Here, we report our experience with local and intravenous fresh frozen plasma (FFP). We retrospectively reviewed medical files of 17 patients and their eight first-degree relatives. Conjunctivitis was the main complaint. Thirteen patients were treated both with intravenous and conjunctival FFP. Venous thrombosis did not develop in any. Genetic evaluation revealed heterogeneous mutations as well as polymorphisms. Diagnosis and treatment of Plg deficiency is challenging; topical and intravenous FFP may be an alternative treatment.


Asunto(s)
Transfusión de Componentes Sanguíneos , Conjuntivitis/terapia , Enfermedades Genéticas Congénitas/terapia , Plasma , Plasminógeno/deficiencia , Preescolar , Conjuntivitis/diagnóstico , Conjuntivitis/genética , Femenino , Enfermedades Genéticas Congénitas/diagnóstico , Enfermedades Genéticas Congénitas/genética , Humanos , Lactante , Recién Nacido , Masculino , Mutación , Polimorfismo Genético
17.
Brain Res ; 1679: 84-90, 2018 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-29183666

RESUMEN

Increasing epidemiological evidence suggests an association between migraine with aura (MA) and cardiovascular events. There is experimental as well as clinical evidence implying cerebral microembolism as a potential trigger for MA attacks. Microembolism may also account for some of the ischemic MRI lesions more commonly observed in MA than in general population. Limited size of clinically-silent MRI lesions suggests isolated occlusion of a small vessel. However, it is not known whether selective thrombosis of a small arteriole (e.g. single mouse penetrating arteriole - PA), can induce cortical spreading depression (CSD), the putative cause of migraine aura and, hence, trigger an MA attack. For this, we mimiced thrombosis of a small vessel caused by microembolism by selectively occluding a PA just before diving into the cortex (radius; 10-25 µm) in the mouse. Clotting was induced with FeCl3 applied focally over the PA by a glass micropipette for 3 min. DC potential changes were recorded and the alterations in cortical blood flow were monitored by laser speckle contrast imaging. Mice were kept alive for 1-4 weeks and brain sections were stained with H&E or luxol-fast blue to evaluate changes induced by PA occlusion. We found that single PA occlusion consistently triggered a CSD originating from the tissue around the PA soon after occlusion and induced delayed, small ischemic lesions within territory of the affected vessel a few weeks later. These findings suggest that cerebral microembolism can lead to MA attacks and may account for some of the silent brain lesions.


Asunto(s)
Arteriolas/diagnóstico por imagen , Depresión de Propagación Cortical/fisiología , Traumatismos Penetrantes de la Cabeza/diagnóstico por imagen , Embolia Intracraneal/patología , Trastornos Migrañosos/diagnóstico por imagen , Animales , Electroencefalografía , Traumatismos Penetrantes de la Cabeza/fisiopatología , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Trastornos Migrañosos/patología , Neuronas/metabolismo , Neuronas/patología , Ratas , Tiempo de Reacción/fisiología , Factores de Tiempo
18.
Molecules ; 22(10)2017 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-28934124

RESUMEN

This work demonstrated the successful application of N-halamine technology for wound dressings rendered antimicrobial by facile and inexpensive processes. Four N-halamine compounds, which possess different functional groups and chemistry, were synthesized. The N-halamine compounds, which contained oxidative chlorine, the source of antimicrobial activity, were impregnated into or coated onto standard non-antimicrobial wound dressings. N-halamine-employed wound dressings inactivated about 6 to 7 logs of Staphylococcus aureus and Pseudomonas aeruginosa bacteria in brief periods of contact time. Moreover, the N-halamine-modified wound dressings showed superior antimicrobial efficacies when compared to commercially available silver wound dressings. Zone of inhibition tests revealed that there was no significant leaching of the oxidative chlorine from the materials, and inactivation of bacteria occurred by direct contact. Shelf life stability tests showed that the dressings were stable to loss of oxidative chlorine when they were stored for 6 months in dark environmental conditions. They also remained stable under florescent lighting for up to 2 months of storage. They could be stored in opaque packaging to improve their shelf life stabilities. In vitro skin irritation testing was performed using a three-dimensional human reconstructed tissue model (EpiDerm™). No potential skin irritation was observed. In vitro cytocompatibility was also evaluated. These results indicate that N-halamine wound dressings potentially can be employed to prevent infections, while at the same time improving the healing process by eliminating undesired bacterial growth.


Asunto(s)
Antibacterianos/química , Antibacterianos/farmacología , Antiinfecciosos/química , Antiinfecciosos/farmacología , Vendajes/microbiología , Humanos , Pseudomonas aeruginosa/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Cicatrización de Heridas/efectos de los fármacos
19.
Blood Coagul Fibrinolysis ; 27(6): 637-44, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26340456

RESUMEN

The plasminogen (Plg) protein is the inactive proenzyme form of plasmin that dissolves fibrin thrombi by a process called fibrinolysis. It has been shown that homozygous or compound-heterozygous deficiency of this protein is a major cause of a rare inflammatory disease affecting mainly mucous membranes found in different body sites. In this study, five individual Turkish patients and nine Turkish families with type 1 Plg deficiency were investigated for PLG gene mutations. All of the coding regions of the PLG gene mutations were screened for mutations using denaturing high-pressure liquid chromatography (DHPLC). Samples showing a different DHPLC profile were subjected to DNA sequencing analysis. Here, we described five novel mutations namely, Cys49Ter, +1 IVS6 G>A, Gly218Val, Tyr283Cys, and Gly703Asp. Previously identified five nonsynonymous (Lys38Glu, Glu180Lys, Gly420Asp, Asp453Asn, Pro763Ser), five synonymous (330 C>T, 582 C>T, 771 T>C, 1083 A>G, 2286 T>G), and a 3' untranslated region (3' UTR) mutation (c.*45 A>G) were also reported in this present study. In this study, we have identified a total of eight mutations, five of which are novel. The mutations/polymorphisms identified in eight of the patients do not explain the disease phenotype. These cases probably carry other pathological mutations (homozygous or compound heterozygous) that cannot be detected by DHPLC.


Asunto(s)
Conjuntivitis/genética , Hidrocefalia/genética , Mutación , Plasminógeno/deficiencia , Plasminógeno/genética , Enfermedades Cutáneas Genéticas/genética , Regiones no Traducidas 3' , Cromatografía Líquida de Alta Presión/métodos , Conjuntivitis/sangre , Conjuntivitis/complicaciones , Conjuntivitis/diagnóstico , Femenino , Expresión Génica , Heterocigoto , Homocigoto , Humanos , Hidrocefalia/sangre , Hidrocefalia/complicaciones , Hidrocefalia/diagnóstico , Masculino , Sistemas de Lectura Abierta , Fenotipo , Análisis de Secuencia de ADN , Enfermedades Cutáneas Genéticas/sangre , Enfermedades Cutáneas Genéticas/complicaciones , Enfermedades Cutáneas Genéticas/diagnóstico , Turquía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA