Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Nano Mater ; 5(10): 13862-13873, 2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-36338327

RESUMEN

Codelivery of chemotherapeutics via nanomaterials has attracted much attention over the last decades due to improved drug delivery to tumor tissues, decreased systemic effects, and increased therapeutic efficacies. High porosities, large pore volumes and surface areas, and tunable structures have positioned metal-organic frameworks (MOFs) as promising drug delivery systems (DDSs). In particular, nanoscale Zr-linked MOFs such as MOF-808 offer notable advantages for biomedical applications such as high porosity, good stability, and biocompatibility. In this study, we report efficient dual drug delivery of floxuridine (FUDR) and carboplatin (CARB) loaded in MOF-808 nanoparticles to cancer cells. The nanoparticles were further functionalized by a poly(acrylic acid-mannose acrylamide) (PAAMAM) glycopolymer coating to obtain a highly selective DDS in cancer cells and enhance the therapeutic efficacy of chemotherapy. While MOF-808 was found to enhance the individual therapeutic effects of FUDR and CARB toward cancerous cells, combining FUDR and CARB was seen to cause a synergistic effect, further enhancing the cytotoxicity of the free drugs. Enhancement of CARB loading and therefore cytotoxicity of the CARB-loaded MOFs could be induced through a modified activation protocol, while coating of MOF-808 with the PAAMAM glycopolymer increased the uptake of the nanoparticles in cancer cells used in the study and offered a particularly significant selective drug delivery with high cytotoxicity in HepG2 human hepatocellular carcinoma cells. These results show how the enhancement of cytotoxicity is possible through both nanovector delivery and synergistic treatment, and that MOF-808 is a viable candidate for future drug delivery studies.

2.
J Mater Chem B ; 9(16): 3423-3449, 2021 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-33909734

RESUMEN

Nanoscale metal-organic frameworks (NMOFs) are an interesting and unique class of hybrid porous materials constructed by the self-assembly of metal ions/clusters with organic linkers. The high storage capacities, facile synthesis, easy surface functionalization, diverse compositions and excellent biocompatibilities of NMOFs have made them promising agents for theranostic applications. By combination of a large variety of metal ions and organic ligands, and incorporation of desired molecular functionalities including imaging modalities and therapeutic molecules, diverse MOF structures with versatile functionalities can be obtained and utilized in biomedical imaging and drug delivery. In recent years, NMOFs have attracted great interest as imaging agents in optical imaging (OI), magnetic resonance imaging (MRI), computed tomography (CT), positron emission tomography (PET) and photoacoustic imaging (PAI). Furthermore, the significant porosity of MOFs allows them to be loaded with multiple imaging agents and therapeutics simultaneously and applied for multimodal imaging and therapy as a single entity. In this review, which is intended as an introduction to the use of MOFs in biomedical imaging for a reader entering the subject, we summarize the up-to-date progress of NMOFs as bioimaging agents, giving (i) a broad perspective of the varying imaging techniques that MOFs can enable, (ii) the different routes to manufacturing functionalised MOF nanoparticles and hybrids, and (iii) the integration of imaging with differing therapeutic techniques. The current challenges and perspectives of NMOFs for their further clinical translation are also highlighted and discussed.


Asunto(s)
Antineoplásicos/química , Estructuras Metalorgánicas/química , Nanopartículas/química , Neoplasias/diagnóstico por imagen , Fármacos Fotosensibilizantes/química , Animales , Antineoplásicos/síntesis química , Antineoplásicos/farmacología , Humanos , Estructuras Metalorgánicas/síntesis química , Estructuras Metalorgánicas/farmacología , Neoplasias/tratamiento farmacológico , Fármacos Fotosensibilizantes/síntesis química , Fármacos Fotosensibilizantes/farmacología
3.
J Mater Chem B ; 8(23): 5131-5142, 2020 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-32420578

RESUMEN

Nanocomposites of gold nanorods (Au NRs) with the cationic porphyrin TMPyP (5,10,15,20-tetrakis(1- methyl 4-pyridinio)porphyrin tetra(p-toluenesulfonate)) were investigated as a nanocarrier system for photodynamic therapy (PDT) and fluorescence imaging. To confer biocompatibility and facilitate the cellular uptake, the NRs were encapsulated with polyacrylic acid (PAA) and efficiently loaded with the cationic porphyrin by electrostatic interaction. The nanocomposites were tested with and without light exposure following incubation in 2D monolayer cultures and a 3D compressed collagen construct of head and neck squamous cell carcinoma (HNSCC). The results showed that Au NRs enhance the absorption and emission intensity of TMPyP and improve its photodynamic efficiency and fluorescence imaging capability in both 2D cultures and 3D cancer constructs. Au NRs are promising theranostic agents for delivery of photosensitisers for HNSCC treatment and imaging.


Asunto(s)
Antineoplásicos/farmacología , Carcinoma de Células Escamosas , Imagen Óptica , Fotoquimioterapia , Fármacos Fotosensibilizantes/farmacología , Porfirinas/farmacología , Carcinoma de Células Escamosas de Cabeza y Cuello , Antineoplásicos/síntesis química , Antineoplásicos/química , Carcinoma de Células Escamosas/diagnóstico por imagen , Carcinoma de Células Escamosas/tratamiento farmacológico , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Sistemas de Liberación de Medicamentos , Ensayos de Selección de Medicamentos Antitumorales , Oro/química , Humanos , Nanopartículas del Metal/química , Tamaño de la Partícula , Fármacos Fotosensibilizantes/síntesis química , Fármacos Fotosensibilizantes/química , Porfirinas/síntesis química , Porfirinas/química , Carcinoma de Células Escamosas de Cabeza y Cuello/diagnóstico por imagen , Carcinoma de Células Escamosas de Cabeza y Cuello/tratamiento farmacológico , Propiedades de Superficie , Células Tumorales Cultivadas
4.
J Biomed Mater Res A ; 106(5): 1390-1399, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29318781

RESUMEN

Biodegradability, hemocompatibility, resistance to protein adsorption, and strong interactions with hydroxyapatite (HAP)-based tissues such as dentin, enamel, and bone are important properties of phosphorus-containing biomaterials. Here, novel phosphonate-functionalized poly(ß-amino ester) (PBAE) macromers are synthesized through aza-Michael addition of various diacrylates [1,6-hexanediol diacrylate (HDDA), poly(ethylene glycol) diacrylate (PEGDA, Mn = 575), 1,4-butanediol diacrylate (BDDA), 1,6-hexanediol ethoxylate diacrylate (HDEDA) and triethylene glycol diacrylate (TEGDA)] and a phosphonate-containing primary amine (diethyl 2-aminoethylphosphonate, A1) efficiently without any catalyst; where replacement of A1 with propyl amine (PA) served as control. The macromers, whose molecular weight is ca. 1000-4000 Da as confirmed by both GPC and 1 H-NMR spectroscopy, are photopolymerized to give biodegradable gels. The degradation behavior and cell interaction of these gels are studied. The degradation rates of the gels can be varied by choice of starting acrylates and the acrylate:amine ratio. Furthermore, the gels showed slightly higher degradability than PA-based analogs (controls). Except TEGDA and PEGDA-based ones, all phosphonate-functionalized PBAE gels supported the attachment of larger number of SaOS-2 cells than nonphosphonated ones and the best film was found to be the one based on HDEDA-A1 with balanced hydrophilicity. Degradation products of these films have no significant cytotoxicity except HDDA-PA. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1390-1399, 2018.


Asunto(s)
Materiales Biocompatibles/química , Ácidos Fosforosos/química , Polímeros/química , Comunicación Celular , Muerte Celular , Línea Celular Tumoral , Supervivencia Celular , Humanos , Peso Molecular , Polímeros/síntesis química , Espectroscopía de Protones por Resonancia Magnética , Solubilidad , Solventes/química , Espectroscopía Infrarroja por Transformada de Fourier , Termogravimetría
5.
J Biomed Mater Res A ; 105(5): 1412-1421, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28165665

RESUMEN

Three novel bisphosphonate-functionalized secondary diamines are synthesized and incorporated into poly(ß-amino ester)s (PBAEs) to investigate the effects of bisphosphonates on biodegradation and toxicity of PBAE polymer networks. These three novel amines, BPA1, BPA2, and BPA3, were prepared from the reactions of 1,4-butanediamine, 1,6-hexanediamine, or 4,9-dioxa-1,12-dodecanediamine with tetraethyl vinylidene bisphosphonate, respectively. The PBAE macromers were obtained from the aza-Michael addition reaction of these amines to 1,6-hexane diol diacrylate (HDDA) and poly(ethylene glycol) diacrylate (PEGDA, Mn = 575) and photopolymerized to produce biodegradable gels. These gels with different chemistries exhibited similar degradation behavior with mass loss of 53-73% within 24 h, indicating that degradation is mostly governed by the bisphosphonate group. Based on the in vitro cytotoxicity evaluation against NIH 3T3 mouse embryonic fibroblast cells, the degradation products do not exhibit significant toxicity in most cases. It was also shown that PBAE macromers can be used as cross-linkers for the synthesis of 2-hydroxyethyl methacrylate hydrogels, conferring small and customizable degradation rates upon them. The materials reported have potential to be used as nontoxic degradable biomaterials. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1412-1421, 2017.


Asunto(s)
Plásticos Biodegradables , Difosfonatos , Fibroblastos/metabolismo , Ensayo de Materiales , Polímeros , Animales , Plásticos Biodegradables/síntesis química , Plásticos Biodegradables/química , Plásticos Biodegradables/farmacocinética , Plásticos Biodegradables/farmacología , Difosfonatos/química , Difosfonatos/farmacocinética , Difosfonatos/farmacología , Fibroblastos/citología , Ratones , Células 3T3 NIH , Polímeros/química , Polímeros/farmacocinética , Polímeros/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...