Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Cell Biol ; 26(5): 770-783, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38600236

RESUMEN

DNA-protein crosslinks (DPCs) arise from enzymatic intermediates, metabolism or chemicals like chemotherapeutics. DPCs are highly cytotoxic as they impede DNA-based processes such as replication, which is counteracted through proteolysis-mediated DPC removal by spartan (SPRTN) or the proteasome. However, whether DPCs affect transcription and how transcription-blocking DPCs are repaired remains largely unknown. Here we show that DPCs severely impede RNA polymerase II-mediated transcription and are preferentially repaired in active genes by transcription-coupled DPC (TC-DPC) repair. TC-DPC repair is initiated by recruiting the transcription-coupled nucleotide excision repair (TC-NER) factors CSB and CSA to DPC-stalled RNA polymerase II. CSA and CSB are indispensable for TC-DPC repair; however, the downstream TC-NER factors UVSSA and XPA are not, a result indicative of a non-canonical TC-NER mechanism. TC-DPC repair functions independently of SPRTN but is mediated by the ubiquitin ligase CRL4CSA and the proteasome. Thus, DPCs in genes are preferentially repaired in a transcription-coupled manner to facilitate unperturbed transcription.


Asunto(s)
ADN Helicasas , Enzimas Reparadoras del ADN , Reparación del ADN , Proteínas de Unión a Poli-ADP-Ribosa , Proteolisis , ARN Polimerasa II , Transcripción Genética , Enzimas Reparadoras del ADN/metabolismo , Enzimas Reparadoras del ADN/genética , Humanos , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa/genética , ADN Helicasas/metabolismo , ADN Helicasas/genética , ARN Polimerasa II/metabolismo , ARN Polimerasa II/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , ADN/metabolismo , ADN/genética , Células HEK293 , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Daño del ADN , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas Portadoras , Receptores de Interleucina-17
2.
Nat Genet ; 55(2): 268-279, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36658433

RESUMEN

Gene expression profiling has identified numerous processes altered in aging, but how these changes arise is largely unknown. Here we combined nascent RNA sequencing and RNA polymerase II chromatin immunoprecipitation followed by sequencing to elucidate the underlying mechanisms triggering gene expression changes in wild-type aged mice. We found that in 2-year-old liver, 40% of elongating RNA polymerases are stalled, lowering productive transcription and skewing transcriptional output in a gene-length-dependent fashion. We demonstrate that this transcriptional stress is caused by endogenous DNA damage and explains the majority of gene expression changes in aging in most mainly postmitotic organs, specifically affecting aging hallmark pathways such as nutrient sensing, autophagy, proteostasis, energy metabolism, immune function and cellular stress resilience. Age-related transcriptional stress is evolutionary conserved from nematodes to humans. Thus, accumulation of stochastic endogenous DNA damage during aging deteriorates basal transcription, which establishes the age-related transcriptome and causes dysfunction of key aging hallmark pathways, disclosing how DNA damage functionally underlies major aspects of normal aging.


Asunto(s)
ARN Polimerasas Dirigidas por ADN , Transcriptoma , Humanos , Ratones , Animales , Preescolar , Transcriptoma/genética , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Genoma , Envejecimiento/genética
3.
Aging Cell ; 21(4): e13562, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35246937

RESUMEN

Organs age differently, causing wide heterogeneity in multimorbidity, but underlying mechanisms are largely elusive. To investigate the basis of organ-specific ageing, we utilized progeroid repair-deficient Ercc1Δ/- mouse mutants and systematically compared at the tissue, stem cell and organoid level two organs representing ageing extremes. Ercc1Δ/- intestine shows hardly any accelerated ageing. Nevertheless, we found apoptosis and reduced numbers of intestinal stem cells (ISCs), but cell loss appears compensated by over-proliferation. ISCs retain their organoid-forming capacity, but organoids perform poorly in culture, compared with WT. Conversely, liver ages dramatically, even causing early death in Ercc1-KO mice. Apoptosis, p21, polyploidization and proliferation of various (stem) cells were prominently elevated in Ercc1Δ/- liver and stem cell populations were either largely unaffected (Sox9+), or expanding (Lgr5+), but were functionally exhausted in organoid formation and development in vitro. Paradoxically, while intestine displays less ageing, repair in WT ISCs appears inferior to liver as shown by enhanced sensitivity to various DNA-damaging agents, and lower lesion removal. Our findings reveal organ-specific anti-ageing strategies. Intestine, with short lifespan limiting time for damage accumulation and repair, favours apoptosis of damaged cells relying on ISC plasticity. Liver with low renewal rates depends more on repair pathways specifically protecting the transcribed compartment of the genome to promote sustained functionality and cell preservation. As shown before, the hematopoietic system with intermediate self-renewal mainly invokes replication-linked mechanisms, apoptosis and senescence. Hence, organs employ different genome maintenance strategies, explaining heterogeneity in organ ageing and the segmental nature of DNA-repair-deficient progerias.


Asunto(s)
Envejecimiento , Daño del ADN , Envejecimiento/genética , Envejecimiento/metabolismo , Animales , Daño del ADN/genética , Reparación del ADN , Ratones , Organoides/metabolismo , Células Madre/metabolismo
4.
Proc Natl Acad Sci U S A ; 115(27): 7057-7062, 2018 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-29915029

RESUMEN

Metastasis remains the leading cause of cancer mortality, and reactive oxygen species (ROS) signaling promotes the metastatic cascade. However, the molecular pathways that control ROS signaling relevant to metastasis are little studied. Here, we identify SIRT3, a mitochondrial deacetylase, as a regulator of cell migration via its control of ROS signaling. We find that, although mitochondria are present at the leading edge of migrating cells, SIRT3 expression is down-regulated during migration, resulting in elevated ROS levels. This SIRT3-mediated control of ROS represses Src oxidation and attenuates focal adhesion kinase (FAK) activation. SIRT3 overexpression inhibits migration and metastasis in breast cancer cells. Finally, in human breast cancers, SIRT3 expression is inversely correlated with metastatic outcome and Src/FAK signaling. Our results reveal a role for SIRT3 in cell migration, with important implications for breast cancer progression.


Asunto(s)
Neoplasias de la Mama/metabolismo , Movimiento Celular , Células Epiteliales/metabolismo , Quinasa 1 de Adhesión Focal/metabolismo , Proteínas de Neoplasias/metabolismo , Sirtuina 3/biosíntesis , Familia-src Quinasas/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Activación Enzimática , Células Epiteliales/patología , Femenino , Humanos , Metástasis de la Neoplasia , Especies Reactivas de Oxígeno , Sirtuina 3/metabolismo
5.
Endocr Relat Cancer ; 25(1): 83-97, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29066502

RESUMEN

A near-homozygous genome (NHG) is especially seen in a subset of follicular thyroid cancer of the oncocytic type (FTC-OV). An NHG was also observed in the metabolically relatively quiescent cell lines XTC.UC1, a model for FTC-OV, and in FTC-133, -236 and -238, the latter three derived from one single patient with follicular thyroid cancer. FTC-236 subclones showed subtle whole-chromosome differences indicative of sustained reciprocal mitotic missegregations. Reactive oxygen species (ROS) scavenger experiments reduced the number of chromosomal missegregations in XTC.UC1 and FTC-236, while pCHK2 was downregulated in these cells. Treatment with antimycin A increased ROS indicated by enhanced MitoSOX Red and pCHK2 fluorescence in metaphase cells. In a selected set of oncocytic follicular thyroid tumors, increasing numbers of whole-chromosome losses were observed toward an aggressive phenotype, but with retention of chromosome 7. Together, ROS activates CHK2 and links to the stepwise loss of whole chromosomes during tumor progression in these lesions. We postulate that sequential loss of whole chromosomes is a dominant driver of the oncogenesis of a subset of follicular thyroid tumors.


Asunto(s)
Adenocarcinoma Folicular/genética , Adenocarcinoma Folicular/metabolismo , Aberraciones Cromosómicas , Especies Reactivas de Oxígeno/metabolismo , Línea Celular Tumoral , Cromosomas Humanos , Genoma , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...