Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Eur Phys J E Soft Matter ; 45(5): 43, 2022 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-35511376

RESUMEN

The effect of an excess of surfactant on the thermophoresis of a sterically stabilized ferrofluid is investigated experimentally by forced Rayleigh scattering (FRS). The experiments are performed with a stable magnetic fluid sample to which controlled amounts of surfactant are added. A decrease in the thermally induced transport of magnetic nanoparticles is observed while increasing the temperature T. The positive Soret coefficient [Formula: see text] decreases by adding 2 vol% of surfactant at room temperature. As shown by FRS relaxation, this decreasing is mainly associated with a reduction of the interaction between the carrier fluid and individual nanoparticles. No significant effect of extra surfactant on the sign of [Formula: see text] is observed at higher T's (up to [Formula: see text]C). Dynamic light scattering at room temperature reveals the presence of a small amount of clusters/aggregates in the samples, which are hardly detectable by FRS relaxation. The presence of these small clusters/aggregates is confirmed by a rheological probing of the fluid properties. Whatever T, a small amount of added surfactant first causes a decrease of the ferrofluid viscosity, associated with a 10% decreasing of the flow activation energy. Further on, viscosity and activation energy both recover at higher excess surfactant concentrations. These results are analyzed in terms of saturation of the surfactant layer, concentration of free surfactant chains and heat of transport of the nanoparticles.

2.
Nanoscale Adv ; 1(8): 2979-2989, 2019 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-36133602

RESUMEN

The influence of the magnetic field on the Seebeck coefficient (Se) was investigated in dilute magnetic nanofluids (ferrofluids) composed of maghemite magnetic nanoparticles dispersed in dimethyl-sulfoxide (DMSO). A 25% increase in the Se value was found when the external magnetic field was applied perpendicularly to the temperature gradient, reminiscent of an increase in the Soret coefficient (S T, concentration gradient) observed in the same fluids. In-depth analysis of experimental data, however, revealed that different mechanisms are responsible for the observed magneto-thermoelectric and -thermodiffusive phenomena. Possible physical and physico-chemical origins leading to the enhancement of the fluids' Seebeck coefficient are discussed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...