Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Pharmaceutics ; 15(3)2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36986599

RESUMEN

Since the delivery of biologic drugs to the brain is greatly hampered by the existence of the blood-brain barrier (BBB), brain shuttles are being developed to enhance therapeutic efficacy. As we have previously shown, efficient and selective brain delivery was achieved with TXB2, a cross-species reactive, anti-TfR1 VNAR antibody. To further explore the limits of brain penetration, we conducted restricted randomization of the CDR3 loop, followed by phage display to identify improved TXB2 variants. The variants were screened for brain penetration in mice using a 25 nmol/kg (1.875 mg/kg) dose and a single 18 h timepoint. A higher kinetic association rate to TfR1 correlated with improved brain penetration in vivo. The most potent variant, TXB4, showed a 3.6-fold improvement over TXB2, which had on average 14-fold higher brain levels when compared to an isotype control. Like TXB2, TXB4 retained brain specificity with parenchymal penetration and no accumulation in other organs. When fused with a neurotensin (NT) payload, it led to a rapid drop in body temperature upon transport across the BBB. We also showed that fusion of TXB4 to four therapeutic antibodies (anti-CD20, anti-EGFRvIII, anti-PD-L1 and anti-BACE1) improved their brain exposure between 14- to 30-fold. In summary, we enhanced the potency of parental TXB2 brain shuttle and gained a critical mechanistic understanding of brain delivery mediated by the VNAR anti-TfR1 antibody.

2.
FASEB J ; 35(11): e21970, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34637549

RESUMEN

Single domain shark variable domain of new antigen receptor (VNAR) antibodies can offer a viable alternative to conventional Ig-based monoclonal antibodies in treating COVID-19 disease during the current pandemic. Here we report the identification of neutralizing single domain VNAR antibodies selected against the severe acute respiratory syndrome coronavirus 2 spike protein derived from the Wuhan variant using phage display. We identified 56 unique binding clones that exhibited high affinity and specificity to the spike protein. Of those, 10 showed an ability to block both the spike protein receptor binding domain from the Wuhan variant and the N501Y mutant from interacting with recombinant angiotensin-converting enzyme 2 (ACE2) receptor in vitro. In addition, three antibody clones retained in vitro blocking activity when the E484K spike protein mutant was used. The inhibitory property of the VNAR antibodies was further confirmed for all 10 antibody clones using ACE2 expressing cells with spike protein from the Wuhan variant. The viral neutralizing potential of the VNAR clones was also confirmed for the 10 antibodies tested using live Wuhan variant virus in in vitro cell infectivity assays. Single domain VNAR antibodies, due to their low complexity, small size, unique epitope recognition, and formatting flexibility, should be a useful adjunct to existing antibody approaches to treat COVID-19.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , COVID-19 , SARS-CoV-2/inmunología , Anticuerpos de Dominio Único/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Animales , COVID-19/inmunología , COVID-19/prevención & control , Chlorocebus aethiops , Humanos , Unión Proteica , Tiburones/inmunología , Células Vero
3.
FASEB J ; 35(2): e21172, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33241587

RESUMEN

Transfer across the blood-brain barrier (BBB) remains a significant hurdle for the development of biopharmaceuticals with therapeutic effects within the central nervous system. We established a functional selection method to identify high affinity single domain antibodies to the transferrin receptor 1 (TfR1) with efficient biotherapeutic delivery across the BBB. A synthetic phage display library based on the variable domain of new antigen receptor (VNAR) was used for in vitro selection against recombinant human TfR1 ectodomain (rh-TfR1-ECD) followed by in vivo selection in mouse for brain parenchyma penetrating antibodies. TXB2 VNAR was identified as a high affinity, species cross-reactive VNAR antibody against TfR1-ECD that does not compete with transferrin or ferritin for receptor binding. IV dosing of TXB2 when fused to human Fc domain (TXB2-hFc) at 25 nmol/kg (1.875 mg/kg) in mice resulted in rapid binding to brain capillaries with subsequent transport into the brain parenchyma and specific uptake into TfR1-positive neurons. Likewise, IV dosing of TXB2-hFc fused with neurotensin (TXB2-hFc-NT) at 25 nmol/kg resulted in a rapid and reversible pharmacological response as measured by body temperature reduction. TXB2-hFc did not elicit any acute adverse reactions, bind, or deplete circulating reticulocytes or reduce BBB-expressed endogenous TfR1 in mice. There was no evidence of target-mediated clearance or accumulation in peripheral organs except lung. In conclusion, TXB2 is a high affinity, species cross-reactive, and brain-selective VNAR antibody to TfR1 that rapidly crosses the BBB and exhibits a favorable pharmacokinetic and safety profile and can be readily adapted to carry a wide variety of biotherapeutics from blood to brain.


Asunto(s)
Afinidad de Anticuerpos , Antígenos CD/inmunología , Transporte Biológico/inmunología , Barrera Hematoencefálica/inmunología , Barrera Hematoencefálica/metabolismo , Receptores de Transferrina/inmunología , Anticuerpos de Cadena Única/inmunología , Animales , Antígenos CD/genética , Antígenos CD/metabolismo , Bacteriófagos/inmunología , Transporte Biológico/genética , Reacciones Cruzadas , Femenino , Células HEK293 , Humanos , Ratones , Ratones Endogámicos BALB C , Receptores de Antígenos/inmunología , Receptores de Antígenos/metabolismo , Receptores de Transferrina/genética , Receptores de Transferrina/metabolismo , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/metabolismo , Anticuerpos de Cadena Única/farmacocinética , Transfección
4.
Nat Commun ; 8: 15786, 2017 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-28593992

RESUMEN

Hunter syndrome is a rare but devastating childhood disease caused by mutations in the IDS gene encoding iduronate-2-sulfatase, a crucial enzyme in the lysosomal degradation pathway of dermatan sulfate and heparan sulfate. These complex glycosaminoglycans have important roles in cell adhesion, growth, proliferation and repair, and their degradation and recycling in the lysosome is essential for cellular maintenance. A variety of disease-causing mutations have been identified throughout the IDS gene. However, understanding the molecular basis of the disease has been impaired by the lack of structural data. Here, we present the crystal structure of human IDS with a covalently bound sulfate ion in the active site. This structure provides essential insight into multiple mechanisms by which pathogenic mutations interfere with enzyme function, and a compelling explanation for severe Hunter syndrome phenotypes. Understanding the structural consequences of disease-associated mutations will facilitate the identification of patients that may benefit from specific tailored therapies.


Asunto(s)
Glicoproteínas/química , Glicoproteínas/metabolismo , Mucopolisacaridosis II/enzimología , Dominio Catalítico , Cristalografía por Rayos X , Glicoproteínas/genética , Humanos , Modelos Moleculares , Mucopolisacaridosis II/etiología , Mutación , Conformación Proteica , Procesamiento Proteico-Postraduccional , Sulfatos/metabolismo
5.
Biomol Eng ; 23(4): 185-94, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16651025

RESUMEN

The ability to design specific amino acid sequences that fold into desired structures is central to engineering novel proteins. Protein design is also a good method to assess our understanding of sequence-structure and structure-function relationships. While beta-sheet structures are important elements of protein architecture, it has traditionally been more difficult to design beta-proteins than alpha-helical proteins. Taking advantage of the tandem repeated sequences that form the structural building blocks in a group of beta-propeller proteins; we have used a consensus design approach to engineer modular and relatively large scaffolds. An idealized WD repeat was designed from a structure-based sequence alignment with a set of structural guidelines. Using a plasmid sequential ligation strategy, artificial concatemeric genes with up to 10 copies of this idealized repeat were then constructed. Corresponding proteins with 4 through to 10 WD repeats were soluble when over-expressed in Escherichia coli. Notably, they were sufficiently stable in vivo surviving attack from endogenous proteases, and maintained a homogeneous, non-aggregated form in vitro. The results show that the beta-propeller scaffold is an attractive platform for future engineering work, particularly in experiments in which directed evolution techniques might improve the stability of the molecules and/or tailor them for a specific function.


Asunto(s)
Secuencias de Aminoácidos/genética , Duplicación de Gen , Ingeniería de Proteínas , Proteínas/genética , Escherichia coli/genética , Proteínas/química
6.
Structure ; 12(8): 1489-94, 2004 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-15296742

RESUMEN

Protein-protein interactions govern a wide range of cellular processes. Molecular recognition responsible for homodimerization and heterodimerization in the rel/NF-kappaB family of eukaryotic transcription factors relies on a small cluster of hydrophobic residues. We have carried out a structural analysis of six NF-kappaB p50 dimer interface mutants; one of them revealed a remarkable alteration. One or possibly both its mutations cause a switch into an intertwined dimer, in which the molecular partners exchange nearly half of their fold. In spite of the extensive swapping of secondary structure elements, the topology within each counterpart is preserved, with a very similar overall structure and minimal changes at the interface. Thus intertwining rescues structure and function from a destabilizing mutation. Since the mutants originate from a directed evolution experiment and are functional, the data provide an evolutionary snapshot of how a protein structure can respond to mutations while maintaining a functional molecular architecture.


Asunto(s)
Evolución Molecular , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Pliegue de Proteína , Proteínas Serina-Treonina Quinasas/química , Animales , Cristalografía por Rayos X , Dimerización , Humanos , Mutación/genética , Unión Proteica , Quinasa de Factor Nuclear kappa B
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...