Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 16(15): 19350-19358, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38563742

RESUMEN

Understanding the electronic transport of metal-semiconductor heterojunctions is of utmost importance for a wide range of emerging nanoelectronic devices like adaptive transistors, biosensors, and quantum devices. Here, we provide a comparison and in-depth discussion of the investigated Schottky heterojunction devices based on Si and Ge nanowires contacted with pure single-crystal Al. Key for the fabrication of these devices is the selective solid-state metal-semiconductor exchange of Si and Ge nanowires into Al, delivering void-free, single-crystal Al contacts with flat Schottky junctions, distinct from the bulk counterparts. Thereof, a systematic comparison of the temperature-dependent charge carrier injection and transport in Si and Ge by means of current-bias spectroscopy is visualized by 2D colormaps. Thus, it reveals important insights into the operation mechanisms and regimes that cannot be exploited by conventional single-sweep output and transfer characteristics. Importantly, it was found that the Al-Si system shows symmetric effective Schottky barrier (SB) heights for holes and electrons, whereas the Al-Ge system reveals a highly transparent contact for holes due to Fermi level pinning close to the valence band with charge carrier injection saturation due to a thinned effective SB. Moreover, thermionic field emission limits the overall electron conduction, indicating a distinct SB for electrons.

2.
Nano Lett ; 22(23): 9544-9550, 2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36442685

RESUMEN

A key issue in the development of high-performance semiconductor devices is the ability to properly measure active dopants at the nanometer scale. In a p-n junction, the abruptness of the dopant profile around the metallurgical junction directly influences the electric field. Here, a contacted nominally symmetric and highly doped (NA = ND = 9 × 1018 cm-3) silicon p-n specimen is studied through in situ biased four-dimensional scanning transmission electron microscopy (4D-STEM). Measurements of electric field, built-in voltage, depletion region width, and charge density are combined with analytical equations and finite-element simulations in order to evaluate the quality of the junction interface. It is shown that all the junction parameters measured are compatible with a linearly graded junction. This hypothesis is also consistent with the evolution of the electric field with bias as well as off-axis electron holography data. These results demonstrate that in situ biased 4D-STEM can allow a better understanding of the electrostatics of semiconductor p-n junctions with nm-scale resolution.

3.
ACS Nano ; 16(3): 4397-4407, 2022 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-35276038

RESUMEN

The growth of ZnTe nanowires and ZnTe-CdTe nanowire heterostructures is studied by in situ transmission electron microscopy. We describe the shape and the change of shape of the solid gold nanoparticle during vapor-solid-solid growth. We show the balance between one monolayer and two monolayer steps, which characterizes the vapor-liquid-solid and vapor-solid-solid growth modes of ZnTe. We discuss the likely role of the mismatch strain and lattice coincidence between gold and ZnTe on the predominance of two monolayer steps during vapor-solid-solid growth and on the subsequent self-regulation of the step dynamics. Finally, the formation of an interface between CdTe and ZnTe is described.

4.
Nanotechnology ; 33(25)2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35276681

RESUMEN

The early stage of growth of semiconductor nanowires is studied in the case where the sidewall adatoms have a short diffusion length due to a strong desorption. Experimental results are described for the growth of ZnSe nanowires by molecular beam epitaxy. They are discussed and interpreted using the Burton-Cabrera-Frank description of the propagation of steps along the sidewalls, and compared to other II-VI and III-V nanowires. The role of the growth parameters and the resulting shape of the nanowires (cylinder, cone, or both combined) are highlighted.

5.
Nanotechnology ; 33(3)2021 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-34633307

RESUMEN

Here, we use electron beam induced current (EBIC) in a scanning transmission electron microscope to characterize the structure and electronic properties of Al/SiGe and Al/Si-rich/SiGe axial nanowire heterostructures fabricated by thermal propagation of Al in a SiGe nanowire. The two heterostructures behave as Schottky contacts with different barrier heights. From the sign of the beam induced current collected at the contacts, the intrinsic semiconductor doping is determined to be n-type. Furthermore, we find that the silicon-rich double interface presents a lower barrier height than the atomically sharp SiGe/Al interface. With an applied bias, the Si-rich region delays the propagation of the depletion region and presents a reduced free carrier diffusion length with respect to the SiGe nanowire. This behaviour could be explained by a higher residual doping in the Si-rich area. These results demonstrate that scanning transmission electron microscopy EBIC is a powerful method for mapping and quantifying electric fields in micrometer- and nanometer-scale devices.

6.
ACS Nano ; 15(11): 18135-18141, 2021 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-34705418

RESUMEN

The functional diversification and adaptability of the elementary switching units of computational circuits are disruptive approaches for advancing electronics beyond the static capabilities of conventional complementary metal-oxide-semiconductor-based architectures. Thereto, in this work the one-dimensional nature of monocrystalline and monolithic Al-Ge-based nanowire heterostructures is exploited to deliver charge carrier polarity control and furthermore to enable distinct programmable negative differential resistance at runtime. The fusion of electron and hole conduction together with negative differential resistance in a universal adaptive transistor may enable energy-efficient reconfigurable circuits with multivalued operability that are inherent components of emerging artificial intelligence electronics.

7.
Adv Mater ; 33(39): e2101989, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34365674

RESUMEN

Superconductor-semiconductor-superconductor heterostructures are attractive for both fundamental studies of quantum phenomena in low-dimensional hybrid systems as well as for future high-performance low power dissipating nanoelectronic and quantum devices. In this work, ultrascaled monolithic Al-Ge-Al nanowire heterostructures featuring monocrystalline Al leads and abrupt metal-semiconductor interfaces are used to probe the low-temperature transport in intrinsic Ge (i-Ge) quantum dots. In particular, demonstrating the ability to tune the Ge quantum dot device from completely insulating, through a single-hole-filling quantum dot regime, to a supercurrent regime, resembling a Josephson field effect transistor with a maximum critical current of 10 nA at a temperature of 390 mK. The realization of a Josephson field-effect transistor with high junction transparency provides a mechanism to study sub-gap transport mediated by Andreev states. The presented results reveal a promising intrinsic Ge-based architecture for hybrid superconductor-semiconductor devices for the study of Majorana zero modes and key components of quantum computing such as gatemons or gate tunable superconducting quantum interference devices.

8.
Nanotechnology ; 32(35)2021 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-34030148

RESUMEN

We developed a new class of mono- or few-layered two-dimensional polymers based on dinuclear (arene)ruthenium nodes, obtained by combining the imine condensation with an interfacial chemistry process, and use a modified Langmuir-Schaefer method to transfer them onto solid surfaces. Robust nano-sheets of two-dimensional polymers including dinuclear complexes of heavy ruthenium atoms as nodes were synthesised. These nano-sheets, whose thickness is of a few tens of nanometers, were suspended onto solid porous membranes. Then, they were thoroughly characterised with a combination of local probes, including Raman spectroscopy, Fourier transform infrared spectroscopy and transmission electron microscopy in imaging and diffraction mode.

9.
Nanotechnology ; 32(8): 085606, 2021 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-33147580

RESUMEN

The spontaneous growth of GaN nanowires (NWs) in absence of catalyst is controlled by the Ga flux impinging both directly on the top and on the side walls and diffusing to the top. The presence of diffusion barriers on the top surface and at the frontier between the top and the sidewalls, however, causes an inhomogeneous distribution of Ga adatoms at the NW top surface resulting in a GaN accumulation in its periphery. The increased nucleation rate in the periphery promotes the spontaneous formation of superlattices in InGaN and AlGaN NWs. In the case of AlN NWs, the presence of Mg can enhance the otherwise short Al diffusion length along the sidewalls inducing the formation of AlN nanotubes.

10.
ACS Appl Nano Mater ; 3(10): 10427-10436, 2020 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-33134884

RESUMEN

While reversibility is a fundamental concept in thermodynamics, most reactions are not readily reversible, especially in solid-state physics. For example, thermal diffusion is a widely known concept, used among others to inject dopants into the substitutional positions in the matrix and improve device properties. Typically, such a diffusion process will create a concentration gradient extending over increasingly large regions, without possibility to reverse this effect. On the other hand, while the bottom-up growth of semiconducting nanowires is interesting, it can still be difficult to fabricate axial heterostructures with high control. In this paper, we report a thermally assisted partially reversible thermal diffusion process occurring in the solid-state reaction between an Al metal pad and a Si x Ge1-x alloy nanowire observed by in situ transmission electron microscopy. The thermally assisted reaction results in the creation of a Si-rich region sandwiched between the reacted Al and unreacted Si x Ge1-x part, forming an axial Al/Si/Si x Ge1-x heterostructure. Upon heating or (slow) cooling, the Al metal can repeatably move in and out of the Si x Ge1-x alloy nanowire while maintaining the rodlike geometry and crystallinity, allowing to fabricate and contact nanowire heterostructures in a reversible way in a single process step, compatible with current Si-based technology. This interesting system is promising for various applications, such as phase change memories in an all crystalline system with integrated contacts as well as Si/Si x Ge1-x /Si heterostructures for near-infrared sensing applications.

11.
ACS Photonics ; 7(7): 1642-1648, 2020 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-32685608

RESUMEN

Recent advances in guiding and localizing light at the nanoscale exposed the enormous potential of ultrascaled plasmonic devices. In this context, the decay of surface plasmons to hot carriers triggers a variety of applications in boosting the efficiency of energy-harvesting, photocatalysis, and photodetection. However, a detailed understanding of plasmonic hot carrier generation and, particularly, the transfer at metal-semiconductor interfaces is still elusive. In this paper, we introduce a monolithic metal-semiconductor (Al-Ge) heterostructure device, providing a platform to examine surface plasmon decay and hot electron transfer at an atomically sharp Schottky nanojunction. The gated metal-semiconductor heterojunction device features electrostatic control of the Schottky barrier height at the Al-Ge interface, enabling hot electron filtering. The ability of momentum matching and to control the energy distribution of plasmon-driven hot electron injection is demonstrated by controlling the interband electron transfer in Ge, leading to negative differential resistance.

12.
J Phys Chem C Nanomater Interfaces ; 124(25): 13872-13877, 2020 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-32617129

RESUMEN

Investigating group-IV-based photonic components is a very active area of research with extensive interest in developing complementary metal-oxide-semiconductor (CMOS) compatible light sources. However, due to the indirect band gap of these materials, effective light-emitting diodes and lasers based on pure Ge or Si cannot be realized. In this context, there is considerable interest in developing group-IV based Raman lasers. Nevertheless, the low quantum yield of stimulated Raman scattering in Si and Ge requires large device footprints and high lasing thresholds. Consequently, the fabrication of integrated, energy-efficient Raman lasers is challenging. Here, we report the systematic investigation of stimulated Raman scattering (SRS) in Ge nanowires (NWs) and axial Al-Ge-Al NW heterostructures with Ge segments that come into contact with self-aligned Al leads with abrupt metal-semiconductor interfaces. Depending on their geometry, these quasi-one-dimensional (1D) heterostructures can reassemble into Ge nanowires, Ge nanodots, or Ge nanodiscs, which are monolithically integrated within monocrystalline Al (c-Al) mirrors that promote both optical confinement and effective heat dissipation. Optical mode resonances in these nanocavities support in SRS thresholds as low as 60 kW/cm2. Most notably, our findings provide a platform for elucidating the high potential of future monolithically integrated, nanoscale low-power group-IV-based Raman lasers.

13.
Nanotechnology ; 31(47): 472001, 2020 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-32503014

RESUMEN

Understanding the interplay between the structure, composition and opto-electronic properties of semiconductor nano-objects requires combining transmission electron microscopy (TEM) based techniques with electrical and optical measurements on the very same specimen. Recent developments in TEM technologies allow not only the identification and in-situ electrical characterization of a particular object, but also the direct visualization of its modification in-situ by techniques such as Joule heating. Over the past years, we have carried out a number of studies in these fields that are reviewed in this contribution. In particular, we discuss here i) correlated studies where the same unique object is characterized electro-optically and by TEM, ii) in-situ Joule heating studies where a solid-state metal-semiconductor reaction is monitored in the TEM, and iii) in-situ biasing studies to better understand the electrical properties of contacted single nanowires. In addition, we provide detailed fabrication steps for the silicon nitride membrane-chips crucial to these correlated and in-situ measurements.

14.
Nano Lett ; 20(1): 314-319, 2020 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-31851824

RESUMEN

Quantum dots inserted in semiconducting nanowires are an interesting platform for the fabrication of single photon devices. To fully understand the physical properties of these objects, we need to correlate the optical, transport, and structural properties on the same nanostructure. In this work, we study the spectral tunability of the emission of a single quantum dot in a GaN nanowire by applying external bias. The nanowires are dispersed and contacted on electron beam transparent Si3N4 membranes, so that transmission electron microscopy observations, photocurrent, and micro-photoluminescence measurements under bias can be performed on the same specimen. The emission from a single dot blue or red shifts when the external electric field compensates or enhances the internal electric field generated by the spontaneous and piezoelectric polarization. A detailed study of two nanowire specimens emitting at 327.5 and 307.5 nm shows spectral shifts at rates of 20 and 12 meV/V, respectively. Theoretical calculations facilitated by the modeling of the exact heterostructure provide a good description of the experimental observations. When the bias-induced band bending is strong enough to favor tunneling of the electron in the dot toward the stem or the cap, the spectral shift saturates and additional transitions associated with charged excitons can be observed.

15.
ACS Nano ; 13(12): 14145-14151, 2019 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-31816231

RESUMEN

Semiconductor-superconductor hybrid systems have outstanding potential for emerging high-performance nanoelectronics and quantum devices. However, critical to their successful application is the fabrication of high-quality and reproducible semiconductor-superconductor interfaces. Here, we realize and measure axial Al-Ge-Al nanowire heterostructures with atomically precise interfaces, enwrapped by an ultrathin epitaxial Si layer further denoted as Al-Ge/Si-Al nanowire heterostructures. The heterostructures were synthesized by a thermally induced exchange reaction of single-crystalline Ge/Si core/shell nanowires and lithographically defined Al contact pads. Applying this heterostructure formation scheme enables self-aligned quasi one-dimensional crystalline Al leads contacting ultrascaled Ge/Si segments with contact transparencies greater than 96%. Integration into back-gated field-effect devices and continuous scaling beyond lithographic limitations allows us to exploit the full potential of the highly transparent contacts to the 1D hole gas at the Ge-Si interface. This leads to the observation of ballistic transport as well as quantum confinement effects up to temperatures of 150 K. Low-temperature measurements reveal proximity-induced superconductivity in the Ge/Si core/shell nanowires. The realization of a Josephson field-effect transistor allows us to study the subgap structure caused by multiple Andreev reflections. Most importantly, the absence of a quantum dot regime indicates a hard superconducting gap originating from the highly transparent contacts to the 1D hole gas, which is potentially interesting for the study of Majorana zero modes. Moreover, underlining the importance of the proposed thermally induced Al-Ge/Si-Al heterostructure formation technique, our system could contribute to the development of key components of quantum computing such as gatemon or transmon qubits.

16.
Nano Lett ; 19(12): 8365-8371, 2019 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-31613639

RESUMEN

A promising approach of making high quality contacts on semiconductors is a silicidation (for silicon) or germanidation (for germanium) annealing process, where the metal enters the semiconductor and creates a low resistance intermetallic phase. In a nanowire, this process allows one to fabricate axial heterostructures with dimensions depending only on the control and understanding of the thermally induced solid-state reaction. In this work, we present the first observation of both germanium and copper diffusion in opposite directions during the solid-state reaction of Cu contacts on Ge nanowires using in situ Joule heating in a transmission electron microscope. The in situ observations allow us to follow the reaction in real time with nanometer spatial resolution. We follow the advancement of the reaction interface over time, which gives precious information on the kinetics of this reaction. We combine the kinetic study with ex situ characterization using model-based energy dispersive X-ray spectroscopy (EDX) indicating that both Ge and Cu diffuse at the surface of the created Cu3Ge segment and the reaction rate is limited by Ge surface diffusion at temperatures between 360 and 600 °C. During the reaction, germanide crystals typically protrude from the reacted NW part. However, their formation can be avoided using a shell around the initial Ge NW. Ha direct Joule heating experiments show slower reaction speeds indicating that the reaction can be initiated at lower temperatures. Moreover, they allow combining electrical measurements and heating in a single contacting scheme, rendering the Cu-Ge NW system promising for applications where very abrupt contacts and a perfectly controlled size of the semiconducting region is required. Clearly, in situ TEM is a powerful technique to better understand the reaction kinetics and mechanism of metal-semiconductor phase formation.

17.
Nano Lett ; 19(5): 2897-2904, 2019 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-30908919

RESUMEN

To fully exploit the potential of semiconducting nanowires for devices, high quality electrical contacts are of paramount importance. This work presents a detailed in situ transmission electron microscopy (TEM) study of a very promising type of NW contact where aluminum metal enters the germanium semiconducting nanowire to form an extremely abrupt and clean axial metal-semiconductor interface. We study this solid-state reaction between the aluminum contact and germanium nanowire in situ in the TEM using two different local heating methods. Following the reaction interface of the intrusion of Al in the Ge nanowire shows that at temperatures between 250 and 330 °C the position of the interface as a function of time is well fitted by a square root function, indicating that the reaction rate is limited by a diffusion process. Combining both chemical analysis and electron diffraction we find that the Ge of the nanowire core is completely exchanged by the entering Al atoms that form a monocrystalline nanowire with the usual face-centered cubic structure of Al, where the nanowire dimensions are inherited from the initial Ge nanowire. Model-based chemical mapping by energy dispersive X-ray spectroscopy (EDX) characterization reveals the three-dimensional chemical cross-section of the transformed nanowire with an Al core, surrounded by a thin pure Ge (∼2 nm), Al2O3 (∼3 nm), and Ge containing Al2O3 (∼1 nm) layer, respectively. The presence of Ge containing shells around the Al core indicates that Ge diffuses back into the metal reservoir by surface diffusion, which was confirmed by the detection of Ge atoms in the Al metal line by EDX analysis. Fitting a diffusion equation to the kinetic data allows the extraction of the diffusion coefficient at two different temperatures, which shows a good agreement with diffusion coefficients from literature for self-diffusion of Al.

18.
Ultramicroscopy ; 190: 58-65, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29689445

RESUMEN

First results on the experimental realisation of a 2 × 2 programmable phase plate for electrons are presented. The design consists of an array of electrostatic elements that influence the phase of electron waves passing through 4 separately controllable aperture holes. This functionality is demonstrated in a conventional transmission electron microscope operating at 300 kV and results are in very close agreement with theoretical predictions. The dynamic creation of a set of electron probes with different phase symmetry is demonstrated, thereby bringing adaptive optics in TEM one step closer to reality. The limitations of the current design and how to overcome these in the future are discussed. Simulations show how further evolved versions of the current proof of concept might open new and exciting application prospects for beam shaping and aberration correction.

19.
Nanotechnology ; 29(25): 255204, 2018 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-29558360

RESUMEN

Nanowire photodetectors are investigated because of their compatibility with flexible electronics, or for the implementation of on-chip optical interconnects. Such devices are characterized by ultrahigh photocurrent gain, but their photoresponse scales sublinearly with the optical power. Here, we present a study of single-nanowire photodetectors displaying a linear response to ultraviolet illumination. Their structure consists of a GaN nanowire incorporating an AlN/GaN/AlN heterostructure, which generates an internal electric field. The activity of the heterostructure is confirmed by the rectifying behavior of the current-voltage characteristics in the dark, as well as by the asymmetry of the photoresponse in magnitude and linearity. Under reverse bias (negative bias on the GaN cap segment), the detectors behave linearly with the impinging optical power when the nanowire diameter is below a certain threshold (≈80 nm), which corresponds to the total depletion of the nanowire stem due to the Fermi level pinning at the sidewalls. In the case of nanowires that are only partially depleted, their nonlinearity is explained by a nonlinear variation of the diameter of their central conducting channel under illumination.

20.
Nanotechnology ; 29(2): 025710, 2018 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-28994395

RESUMEN

Quantitative characterization of electrically active dopants and surface charges in nano-objects is challenging, since most characterization techniques using electrons [1-3], ions [4] or field ionization effects [5-7] study the chemical presence of dopants, which are not necessarily electrically active. We perform cathodoluminescence and voltage contrast experiments on a contacted and biased ZnO nanowire with a Schottky contact and measure the depletion length as a function of reverse bias. We compare these results with state-of-the-art off-axis electron holography in combination with electrical in situ biasing on the same nanowire. The extension of the depletion length under bias observed in scanning electron microscopy based techniques is unusual as it follows a linear rather than square root dependence, and is therefore difficult to model by bulk equations or finite element simulations. In contrast, the analysis of the axial depletion length observed by holography may be compared with three-dimensional simulations, which allows estimating an n-doping level of 1 × 1018 cm-3 and negative sidewall surface charge of 2.5 × 1012 cm-2 of the nanowire, resulting in a radial surface depletion to a depth of 36 nm. We found excellent agreement between the simulated diameter of the undepleted core and the active thickness observed in the experimental data. By combining TEM holography experiments and finite element simulation of the NW electrostatics, the bulk-like character of the nanowire core is revealed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...